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Introduction 

David Winkler, CSIRO Fellow, and professor at Latrobe Institute for Molecular Science, and Monash 

Institute of Pharmaceutical Sciences, Melbourne, Australia, received the 2017 Herman Skolnik Award for 

his seminal contributions to chemical information in the development of optimally sparse, robust 

machine learning methods for QSAR, and in leading the application of cheminformatics methods to 

biomaterials, nanomaterials, and regenerative medicine. A summary of his achievements has been 

published in the Chemical Information Bulletin. David was invited to present an award symposium at the 

Fall 2017 ACS National Meeting in Washington, DC. He invited six speakers: 

 

L to R: Alex Tropsha, Johnny Gasteiger, Yoram Cohen; Tim Clark, David Winkler, Ceyda Oksel, Tudor 

Oprea 
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Approaching reality: simulating electronic devices 

Tim Clark, of the University of Erlangen-Nürnberg, was the first 

speaker. The impact of modern hardware and software on simulations 

has not been an issue of doing things faster and faster, but rather one 

of doing calculations that we could not do before. Ab initio calculations 

can now be done on compounds with several hundred atoms, density 

functional theory calculations on a few thousand atoms, and 

semiempirical molecular orbital (MO) calculations on 100,000 atoms. 

Simulations of several microseconds are now standard.  

Semiempirical (neglect of diatomic differential overlap, NDDO) molecular orbital (MO) calculations 

without local approximations are now possible for 100,000 atoms or more with the massively parallel 

semiEMPIRical molEcular-Orbital Program (EMPIRE) program,1-3 which is freely available to academic 

groups. Calculation scales with approximately N2.5. We are no longer limited to small or homogeneous, 

perfect systems, but can now include defects, dopants, impurities or domain boundaries in the 

calculations, or even calculate amorphous systems. 

The results of such calculations can be used to simulate charge-transport through disordered 

monolayers. Clark’s team has studied self-assembled monolayer field-effect transistors (SAMFETs) 

handling conformational freedom using classical atomistic molecular-dynamics (MD) simulations, 

electronic properties using very large scale semiempirical MO theory, and conductance by propagating 

single electrons or using diffusion quantum Monte-Carlo (DQMC) charge-transport simulations.4-9 

The molecules that comprise the SAM contain insulating and semiconducting moieties, so that they 

serve as both gate dielectric and the active transistor channel in a device:  

  

Tim’s team has used simulations to describe and optimize complex systems of self-assembled 

monolayers on surfaces, not only to explain their morphology but also to predict molecular 

compositions and arrangements favorable for improved charge transport.7 In more recent work,10 they 

have constructed transistors based on SAMs of two molecules that consist of the organic p-type 

http://www.ceposinsilico.de/products/empire.htm


semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C11 or C12 alkylphosphonic acid. 

Both molecules form ordered SAMs, but the experiments show that the size of the crystalline domains 

and the charge-transport properties vary considerably in the two systems. Because of the angle of the 

head groups one can form crystalline domains and the other cannot. This can be reproduced with simple 

force field calculations. 

 

The procedure for charge transfer simulations is as follows: 

 Calculate the neutral system and use local properties as external potentials: 

o Local electron affinity11,12 for electrons, local ionization energy13 for holes 

o Cluster model or periodic-boundary conditions 

 Monte-Carlo search for conductance paths 

 DQMC simulations14 for many electrons  

 Propagate single charge carriers on these potentials to determine time scales. 

Tim showed an MD simulation of the charge transport paths. For the transport calculations, the team 

employed a fully quantum mechanical description, namely Landauer transport theory.9 In accord with 

experiment, they found an improved charge transport across BTBT-C11-PA SAMs compared to BTBT-C12-

PA SAMs. 

DQMC reproduces voltage/current curves (assuming that the number of Monte Carlo steps correlates 

with time) and reproduces experimentally observed hysteresis. It also revealed dimeric fullerene 

electron traps.15 Density functional theory calculations indicate that van der Waals fullerene oligomers 

can form interstitial electron traps in which the electrons are even more strongly bound than in isolated 

fullerene radical anions. Spectroelectrochemical measurements on a bis-fullerene-substituted peptide 



provide experimental support. The proposed deep electron traps are relevant for all organic electronics 

applications in which non-covalently linked fullerenes in van der Waals contact with one another serve 

as n-type semiconductors.  

Finally Tim showed the results of simulations of hole-transport through a self-assembled monolayer 

substituted with a p-type organic semiconductor and with crystalline domains (see the work above on 

BTBT linked to a C11 or C12 alkylphosphonic acid). He illustrated hole transport through the monolayers. 

Hysteresis is not observed in this case. Tim also illustrated well-defined paths through the crystalline 

domains of the O2(OH)P(CH2)11-BTBT material. The researchers have shown that structural order is 

particularly important for the electronic properties of semiconducting self-assembled monolayers, and 

they predict that semiconducting SAMs with a higher degree of crystallinity and larger crystalline regions 

will exhibit superior performance. 

Applications of machine learning to materials and chemical property prediction 

Alex Tropsha, of the University of North Carolina Chapel Hill, UNC Eshelman 

School of Pharmacy, is benefiting from the explosive growth of materials data. 

There are 160,000 entries in the Inorganic Crystal Structure Database (ICSD). 

There are numerous commercial and open experimental databases (NIST, 

MatWeb, MatBase etc.), and huge databases such as AFLOWLIB, Materials 

Project, and Harvard Clean Energy. The chemical space of possible materials is 

huge : about 10100 candidates.16 The US government’s Materials Genome 

Initiative recognizes the need for new high performance materials. The growth of 

materials databases and emerging informatics approaches offers the opportunity 

to transform materials discovery into data- and knowledge-driven rational 

design. 

AFLOW is a globally available database of 1,688,245 material compounds, with over 167,136,255 

calculated properties. The optimized geometries, symmetries, band structures, and densities of states 

available in the AFLOWLIB consortium databases have been converted into two distinct types of 

fingerprints: Band structure fingerprints (B- fingerprints), and Density of States fingerprints (D-

fingerprints).17 The framework is employed to query large databases of materials using similarity 

concepts, to map the connectivity of materials space (as a materials cartogram) for rapidly identifying 

regions with unique organizations and properties, and to develop predictive quantitative materials 

structure−property relationship (QMSPR) models for guiding materials design. 

To represent the library of materials as a network (a material cartogram), the researchers considered 

each material, encoded by its fingerprint, as a node. Edges exist between nodes with similarities above 

certain thresholds (in this case, Tanimoto similarity and a threshold of 0.7). A materials map from B-

fingerprints was made from 15,000 materials from ICSD, using DFT PBE calculations from AFLOWLIB. 

Four big clusters were observed: insulators, ceramics, and complex oxides; bimetals and polymetals; 

metallic and nonmetallic combinations; and small band gap semiconductors. 

http://aflowlib.org/
http://aflowlib.org/


Novel descriptors (property-labeled materials fragments) not requiring prior DFT calculations have also 

been developed by Voronoi tessellation and neighbors search of crystal structures, followed by infinite 

periodic graph construction and property labeling, and generation of circular fingerprints..18 Starting 

from only a crystal structure, regression models can be built to predict band gap energy, and thus 

electronic properties, or to predict thermo-mechanical properties such as bulk modulus, shear modulus, 

thermal expansion, heat capacity, and thermal conductivity. All the models are trained based on DFT-

computed properties. Heuristic design rules can be extracted. 

Material informatics has also been applied to design of a novel photocathode material for dye-sensitized 

solar cells (DSSCs).19 By conducting a virtual screening of 50,000 known inorganic compounds, the 

researchers have identified lead titanate (PbTiO3), as the most promising photocathode material. 

Notably, lead titanate is significantly different from the traditional base elements or crystal structures 

used for photocathodes. In experimental validation, the fabricated lead titanate DSSC devices exhibited 

the best performance in aqueous solution, showing remarkably high fill factors compared to typical 

photocathode systems. Currently, device performance is low, but it might be improved by designing a 

new dye. 

Next Alex discussed applications of machine learning to designing chemicals with the desired physical 

and biological properties where compound structure is described only by its SMILES notation, and no 

other conventional chemical descriptors are used. The new approach developed in his lab is based on 

concepts from text mining that rely on neural networks to solve the problem of semantic similarity of 

texts. 

The British linguist J. R. Firth is noted for drawing attention to the context-dependent nature of 

meaning. In particular, he is known for the 1957 quotation: “You shall know a word by the company it 

keeps”. To define the semantic similarity between two entities, Alex and his colleagues have made use 

of approaches embedded in Word2Vec, a neural network based approach to describe linguistic context 

of words developed at Google.20 With Word2Vec, a network is trained using each word of a corpus of 

text and some configurable number of surrounding words.  The model can be trained to either predict 

the surrounding context based on the current word, or to predict the current word from the context. 

Elena Tutubalina and Alex (manuscript in preparation) have performed drug clustering in semantic 

similarity space, using webmd.com, patient.info, drugs.com, amazon.com askapatient.com, and 

dailystrength.org as sources of user comments, and showed that drugs with similar pharmaceutical 

action do cluster together in the semantic similarity space. 

Alex’s team has also experimented with de novo design of molecules with the desired properties using 

SMILES in Deep Reinforcement Learning: 



 

Structural bias, physical properties, and biological activity have been used in proof of concept case 

studies of user-biased molecular design. In summary, Alex cited Confucius who said, “Without knowing 

the force of words, it is impossible to know more”. Alex quipped “And remember: anything you say can, 

and will be used … for text mining!”. 

A nanoinformatics platform for environmental impact assessment of manufactured 

nanomaterials 

Yoram Cohen of the University of California Center for Environmental 

Implications of Nanotechnology gave a talk co-authored by colleagues at the 

University of California. Nanoinfo.org is a nanoinformatics platform that 

supports the environmental impact assessment of engineered nanomaterials 

(ENMs) with a central database of ENM safety data and a toolkit for various 

exploration and analysis methods.21 These methods include the estimation of 

environmental exposure levels of ENMs (MendNano), evaluation of 

environmental releases of ENMs (LearNano), analysis of high throughput 

toxicity data of ENMs (ToxNano), and predictive toxicity models, and analysis 

of the environmental impact of ENMs via Bayesian inference (NanoEIA). 

NanoDatabank is a data repository of ENM properties, and experimental and simulation datasets of 

ENM toxicity and environmental fate and transport (F&T). It contains databases that include 

physicochemical properties; toxicological properties; experimental datasets of ENM toxicity, and F&T; 

and results of model simulations and estimation of ENM toxicity and F&T behavior, and physicochemical 

properties. It includes data for over 300 nanomaterials, and toxicity data for various cell lines, zebrafish 

and bacterial strains, from 325 publications. ToxNano is a high content data analysis tool (HDAT)22,23 

offering QSARs using random forest and Bayesian network toxicity models; analysis of knowledge 

evidence, and data visualization. MendNano (multimedia environmental distribution of nanomaterials) 

is a web-based modeling platform.24,25 Nanoinf.org has 400 users from more than 50 countries. 

As an example of work on the toxicity of nanomaterials, Yoram presented unpublished results on 

evaluating the body of evidence on quantum dots (QDs) via meta-analysis. QDs are very small 

semiconductor particles, only several nanometers in size, so small that their optical and electronic 

properties differ from those of larger particles. Many types of quantum dot will emit light of specific 

http://nanoinfo.org/#!/people/
http://nanoinfo.org/
http://nanoinfo.org/#!/nanodatabank/
http://nanoinfo.org/#!/toxnano/
http://nanoinfo.org/#!/mendnano/


frequencies if electricity or light is applied to them, and these frequencies can be precisely tuned by 

changing the dots’ size, shape and material. 

QD data were collected from 448 publications, reporting 2,703 samples, with 7 core types, 12 shell 

types, 13 surface modifications, 14 surface ligands, and 20 assay types. In the predictive toxicity model 

R2 was about 0.81 for cell viability, and about 0.83 for IC50. Yoram and his colleagues studied cause-

effect relationships between cellular bioactivity and QD attribute. Median IC50 was ≤ 10 mg/L, for the 

surface ligands of type amphiphilic polymer, lipid, other hydrophobic, aminothiol, and other amphiphilic. 

It was uniformly distributed for silica. There was no correlation between surface charge and IC50. The 

sensitivity distribution of IC50 for cell anatomical type suggests that more differentiated cells are more 

adversely affected by exposure to QDs. Toxicity is not governed by QD size alone: there is a wide range 

of IC50 for a given size, and toxicity can be high or low irrespective of the size. Core type affects toxicity, 

but the wide range of IC50 for a given core type suggests that there are other important attributes. 

Bayesian network models can be useful for handling uncertainties, mixed attributes, and hidden 

conditional relationships since they provide rigorous and simple mathematical means of handling data 

uncertainty; they integrate graphical representation of the problem with probabilistic evaluation of 

variable relationships; they can incorporate prior knowledge based on data as well as expert opinion in a 

convenient representation of probability distributions; and they calculate the likelihood of specific 

scenarios based on prior knowledge. 

Bayesian network model sensitivity analysis showed that QD toxicity is correlated with the most relevant 

(or significant) attributes tabulated below. The QD attributes identified in this study were consistent 

with previous analysis via random forest.26 

Bayesian network for IC50 Random forest for IC50 

Surface ligand QD diameter 

Shell Surface ligand 

QD diameter Shell 

Assay type Assay type 

Exposure time Exposure time 

Surface modification Surface modification 

Surface charge Surface charge 

 

Bayesian network for cell viability Random forest for cell viability 

Surface ligand QD diameter 

QD diameter QD concentration 

QD concentration Surface ligand 

Exposure time Exposure time 

Shell Surface modification 

Assay type Assay type 

Surface modification Surface charge 

Surface charge  

 



Bayesian networks for new explorations of association rules among various biological responses as a 

result of exposure to manufactured nanomaterials have also been demonstrated in zebrafish toxicity 

studies. Yoram and his co-workers used a nanomaterial biological interaction knowledge base of 

zebrafish phenotype data with 1,147 samples, and 11 biological responses (including mortality). The 

data included exposure to seven material types (carbon, cellulose, dendrimer, metal, (metal) oxide, 

polymeric, and semiconductor) of 0.8 –250 nm average primary size; concentration; number of embryos 

per experiment; and responses recorded for each exposure scenario.  

The Bayesian network model for zebrafish mortality (percentage of dead embryos) had an R2 of about 

0.79. Sensitivity analysis of the key material properties and exposure conditions that correlate with 

Zebrafish mortality was carried out, and cause-effect relationships between zebrafish phenotypes and 

material properties and exposure conditions were investigated. Attribute significance was determined 

by exhaustive search of 13 attributes using bootstrapping. Mortality at 120 hours post-fertilization 

correlated with concentration used, core atomic composition, outermost surface, average particle size, 

surface charge, shell composition and purity. The significant attributes at 24 hours post-fertilization 

were the same but the ranking of the top four differed slightly. 

The responsible development of beneficial manufactured nanomaterials requires a thorough 

understanding of their potential adverse environmental and human health impacts. This requires 

predicting the biological response of various receptors when exposed to these materials, along with an 

understanding of their fate and transport, and their range of likely exposure concentrations. Yoram’s 

work helps to rank various nanomaterials with respect to their potential environmental impact.  

Accurate and interpretable nano-QSAR models from genetic programming-based decision 

tree construction approaches 

Ceyda Oksel of Imperial College London reported on the PhD work27 she had 

done at the University of Leeds in collaboration with Xue Wang and David 

Winkler. Given the ever increasing use of ENMs, it is essential to assess 

properly all potential risks that may occur as a result of exposure to ENMs. 

The distinctive characteristics of ENMs that have made them superior to 

bulk materials for particular applications might also have a substantial 

impact on the level of risk they pose. Despite the clear benefits that 

nanotechnology can bring, there are serious concerns about the potential 

health risks associated with the production and use of ENMs, intensified by 

the limited understanding of what makes ENMs toxic and how to make them safe.  

The involvement of computational specialists in nano-safety research has become more prominent since 

Registration, Evaluation, Authorization and restriction of CHemicals (the European Union’s REACH 

regulation) promoted the use of in silico techniques such as QSAR for toxicity assessment. Data-driven 

models that decode the relationships between the biological activities of ENMs and their 

physicochemical characteristics provide an attractive means of maximizing the value of scarce, and 

expensive, experimental nanotoxicity data.  

 

http://www.hse.gov.uk/reach/


Nano-QSAR models can be used to predict the properties of new materials and to design safer materials. 

Leeds-based genetic programming-based decision tree (GPTree) approach27 applies decision tree 

learning algorithms to identify the best combination of physicochemical properties to predict biological 

activity of ENMs. The trees are automatically constructed from the data. Decision trees have several 

advantages. They are able to deal with small, large and noisy datasets; they can detect nonlinear 

relationships (as well as linear ones); they allow input variables to be selected automatically; they are 

transparent; and they represent knowledge clearly (i.e., the models are interpretable). 

GPTree begins with a random population of solutions and repeatedly attempts to find better solutions 

by applying genetic operators such as mutation and crossover. The first step is to construct a user-

specified number of trees (usually a large number) starting from a random compound and randomly 

chosen descriptor. Once the initial population is generated, tournament selection is performed to 

identify the best tree to be used as a parent tree for genetic operators such as crossover. The best tree 

from the subset of trees is chosen by its fitness (e.g., accuracy). Genetic operators such as crossover and 

mutation are used to form the next generation of trees that are added or replace the current 

generation. These steps are repeated until the user-specified number of generations has been created. 

The decision tree model with the highest accuracy of classification for the training set is selected as the 

optimal decision tree model.  

Ceyda demonstrated the application of genetic programming based decision tree construction 

algorithms to QSAR modeling of ENM toxicity by five case studies. The accuracy of the model predictions 

was satisfactorily high and clearly highly statistically significant relative to the classification rate due to 

chance. 

In the first case study, a large set of in-house in vitro data (obtained in collaboration with Edinburgh 

University) was used. The dataset included a panel of 18 ENMs with varying structures (e.g., carbon-

based materials and metal oxides), a set of in vitro cytotoxicity assays (e.g., LDH release, apoptosis, 

necrosis, viability, MTT and hemolytic effects), and several experimentally measured physicochemical 

properties (e.g., particle size and size distribution, surface area, morphology, metal content, reactivity 

and free radical generation). After a set of data preparation and scaling steps, a heat map of toxicity 

data combined with hierarchical clustering was constructed. As a second step, C-Visual Explorer (CVE) 

was used as a tool to create a parallel coordinate plot of the multivariate toxicity data. Similar to the 

heat map visualization results, the parallel coordinate plot showed that the aminated polystyrene latex 

beads and zinc oxide had the highest toxicity values in nearly all assays, followed by nanotubes that had 

medium to high toxicity values in viability and MTT assays. 

Then, a dimensionality reduction technique, principal component analysis, was performed on all the 

toxicity data and the ENMs were divided into five categories according to their toxicity values. GPTree 

was used to identify potential descriptors contributing to the toxicity of four particular ENMs that were 

clearly separated from the main cluster formed by low-toxicity ENMs. It was concluded that high aspect 

ratio contributed to the toxicity of nanotubes, while the most likely factor driving the toxicity of zinc 

oxide was its high zinc content. 



 

In the second case study, the cellular uptake of nanoparticles, 13 descriptors representing the hydrogen-

bonding characteristics, functional group counts, molecular shape, composition and polarizability were 

found to be significant among a larger set of 147 chemically interpretable descriptors. The findings of 

GPTree analysis regarding the large contribution of lipophilicity, hydrogen bonding and molecular shape 

descriptors in the cellular uptake behavior of nanoparticles is consistent with earlier studies. 

 

For a cytotoxicity to human keratinocytes dataset (the third case study),28 the descriptors selected by 

GPTree were the enthalpy of formation of metal oxide nanocluster representing a fragment of the 

surface (∆𝐻𝑓
𝑐), the Mulliken’s electronegativity of the cluster, Xc, and the chemical hardness. The former 

two descriptors are consistent with the properties reported to be important for cytotoxicity of metal 



oxide nanoparticles. In addition, the chemical hardness corresponding to the reactivity was found to be 

an influential parameter on the cytotoxicity of nanoparticles. 

 

The descriptors selected by GPTree were used to develop a regression model which was statistically 

significant and had good predictivity (R2 = 0.92, Q2 = 0.72). A variable importance plot showed that Xc 

was twice as important as ∆𝐻𝑓
𝑐 which was a little more important than η. 

The data used in the fourth case study included a set of 27 descriptors, 23 ENMs, and a set of multi- 

and single-parameter toxicity screening assays. The descriptors selected by the GPTree model 

included nanoparticle conduction band energy, EC, and ionic index of metal cation, Z2/r. This finding 

is very consistent with past studies that identified these two descriptors as being important for the 

toxicity of metal oxide nanoparticles. 

 

In the last case study, exocytosis of gold nanoparticles in macrophages, the optimal descriptors for 

predicting the exocytosis were the charge accumulation, zeta potential and charge density. These 

findings are in line with previous studies revealing an association between surface characteristics of gold 

nanoparticles, especially high positive surface charge, and their exocytosis patterns in macrophages. 



 

Ceyda concludes that the genetic programming based decision tree construction algorithm shows 

considerable promise in its ability to identify the relationship between molecular descriptors and 

biological effects of ENMs. Selected decision tree models yielded (external) prediction accuracies of 86-

100%. Another statistical test (Y-randomization) was also performed to demonstrate the robustness of 

the selected models. This work is a first step in the implementation of a genetic programming based 

decision tree construction algorithm to nano-QSAR studies. 

Self-organizing neural networks in chemistry 

Johnny Gasteiger of the University of Erlangen-Nürnberg is skeptical about 

deep neural networks: they are good for getting funding but they are yet to be 

proven. Johnny illustrated some of the useful applications of shallow neural 

networks. Much like the human brain generates two-dimensional sensory 

maps of the environment, a Kohonen network (a self-organizing map) can 

generate two-dimensional maps of high-dimensional chemical data. Crucial for 

the success of the study of chemical problems by a self-organizing neural 

network is the representation of the chemical data. 

The shape and surface of molecules are very important: the entire electrostatic 

potential can be seen in a colored 3D model. Johnny has projected the 3D Cartesian coordinates of, for 

example, 2-chloro-4-hydroxy-2-methylbutane onto a Kohonen net to get a 2D map: 

 

The neurotransmitter acetylcholine binds to two types of receptors, the muscarinic and the nicotinic 

receptor. Kohonen maps of the van der Waals surface of muscarinic agonists (muscarine, atropine, 



scopolamine, pilocarpine) and nicotinic agonists (nicotine, (+)-anatoxin a, mecamylamine, pempidine) 

have also been produced by projecting points of the 3D surface on a 2D space.29 Such maps allowed the 

total molecular electrostatic potential (MEP) of a compound to be represented in a single picture, 

instead of requiring a series of pictures as formerly. Johnny showed the maps of the MEPs of the eight 

compounds with muscarinic agonists in the top row and nicotinic agonists below. 

 

The results showed that the MEP is important for the binding of these compounds to their receptors. 

The Kohonen maps reflect significant characteristics of the MEPs and can therefore be used in the 

search for biologically active compounds. 

In analytical chemistry, neural networks have been used in the classification of Italian olive oils.30 The 

classification was performed on a set of 572 Italian olive oils, from nine different regions, on the basis of 

an analysis of eight fatty acids. Kohonen learning was superior to a network using the back-propagation 

of errors. There were 250 oils in the training set and 322 in the test set; 312 of the 322 were correctly 

predicted. The nine Italian regions were nicely differentiated in the Kohonen map. What is, however, 

even more interesting is that the Kohonen map is reflecting the map of Italy. This emphasizes the power 

of unsupervised learning, discovering information that is hidden in the data. In this case, clearly, the 

different climates and the different soils are responsible for the separation of the regions of Italy in the 

self-organizing map: 



 

Kohonen networks use unsupervised learning. Johnny next discussed examples of supervised learning. In 

one experiment the electronic properties located on the atoms of a molecule such as partial atomic 

charge, and electronegativity and polarizability values were encoded by an autocorrelation vector 

accounting for the constitution of a molecule.31 Using the 49-dimensional vector of seven properties and 

seven distances, it is possible to distinguish between 112 dopamine agonists and 60 benzodiazepine 

receptor agonists even after projection into a Kohonen map. The two types of compounds can still be 

distinguished if they are buried in a dataset of 8,323 compounds of a chemical supplier catalog 

comprising a wide structural variety. The method can be used for searching for structural similarity, and, 

in particular, for finding new lead structures with biological activity. 

Gasteiger’s team has also worked on simulation of infrared spectra.32 They developed an empirical 

approach to the modeling of the relationships between the 3D structure of a molecule and its IR 

spectrum based on a novel 3D structure representation, and a counterpropagation (CPG) neural 

network. The 3D coordinates of the atoms of a molecule are transformed into a structure code that has 

a fixed number of descriptors irrespective of the size of a molecule. The structure coding technique is 

referred to as radial distribution function (RDF) code.33 3D structures were transformed into radial 

codes (128 values) and put into a CPG network. IR spectra (128 absorbance values) were also input, and 

the network was trained. When IR spectra are simulated the fingerprint region is predicted well because 

of the representation of the 3D structure. A CPG network can be operated in reverse mode,33 enabling 

the prediction of a structure code. The input of a query infrared spectrum into a trained CPG network 

provides a structure code vector, which represents the radial distribution function with 128 discrete 

values. This RDF code is then decoded to provide the Cartesian coordinates of a 3D structure. 

Johnny concluded by mentioning his recent collaboration with David Winkler on dye solubility in carbon 

dioxide.34 David has also worked on melting points of ionic liquids, fibrinogen adsorption to polymeric 



surfaces, and normalized metabolic activity of polymeric biomaterials. Johnny encouraged David to 

continue to do good science. 

Understudied proteins. Time to shift the paradigm 

Tudor Oprea of the University of New Mexico believes that identifying 

novel targets as a precompetitive endeavor can lead to new therapeutic 

opportunities if academia and industry work together. Most protein 

classification schemes are based on structural and functional criteria. For 

therapeutic development, it is useful to understand how many data and 

what types of data are available for a given protein, thereby highlighting 

well-studied and understudied targets. Tudor and his co-workers classify 

proteins annotated as drug targets as “Tclin”; proteins for which potent 

small molecules are known as “Tchem”; proteins for which biology is better 

understood as “Tbio”; and proteins that lack antibodies, publications or 

National Center for Biotechnology Information (NCBI) Gene References Into 

Function (GeneRIFs) as “Tdark”. 

Tclin proteins are associated with drug mechanism of action (MoA). Tchem proteins have bioactivities in 

ChEMBL and DrugCentral, plus human curation for some targets. A Tbio protein lacks small molecule 

annotation, and is above the cutoff criteria for Tdark, or is annotated with a Gene Ontology (GO) 

molecular function or biological process leaf term(s) with an experimental evidence code, or has 

confirmed Online Mendelian Inheritance in Man (OMIM) phenotype(s). Tudor and his colleagues used 

name entity recognition software35 from L. J. Jensen’s lab to evaluate nearly 27 million abstracts  to 

derive a publication score per protein. Tdark proteins (“understudied proteins”) have little information 

available, and meet two of the following three criteria: a PubMed text mining score of less than five, 

three or fewer GeneRIFs, and 50 or fewer antibodies available according to antibodypedia. As external 

validation, Tdark proteins have statistically significantly lower values compared to the other three target 

development levels (TDLs) in terms of fewer GO terms, fewer patents, fewer National Institutes of 

Health (NIH) R01 grants, and fewer searches of  the STRING-db database. 

Tudor’s first “take home message” was that there is a knowledge deficit: over 37% of the proteins 

remain understudied (the Tdark ones) and only about 10% of the proteome (Tclin and Tchem) can be 

targeted by potent small molecules. Are Tdark proteins underfunded because there is no scientific 

interest in this category, or is the lack of knowledge perpetuated by lack of funding? It is possible that 

the absence of high quality, well characterized molecular tools (i.e., antibodies or chemical probes) may 

be a root cause for this situation, but lack of tools leads to lack of interest, and lack of interest 

diminishes the probability of such tools being developed. 

The patent literature is also of interest. Almost half of patent bioactivity data are never published 

elsewhere, and compounds may appear in patents two to four years before they appear in the 

literature. The SureChEMBL team has annotated the SureChEMBL patent corpus with gene and disease 

terms. Looking at patents between 2001 and 2013, they processed a set of 99 approved patents of 

interest to the Illuminating the Druggable Genome (IDG) consortium. These bioactivity data from 99 

http://www.nature.com/nrd/posters/druggablegenome/index.html
https://www.ebi.ac.uk/chembl/
http://drugcentral.org/
http://www.omim.org/
https://www.antibodypedia.com/
https://string-db.org/
https://www.surechembl.org/search/
https://ncats.nih.gov/idg


patents were manually extracted: 20,941 activity measurements for 11,358 compounds, and 1,134 

assays. These data are already uploaded into ChEMBL 23. Data for seven IDG Phase 2 targets were 

uncovered by this patent data extraction exercise, data which progress TDLs of two targets (GPR6 and 

HCAR1) from Tbio to Tchem. 

Anne Hersey of ChEMBL has estimated that more than 50% of the data from patents do not end up in 

peer-reviewed papers. IDG, Open Targets, BindingDB, and others could collectively, in a precompetitive 

manner, mine data from patents (if necessary, for only terminated projects, or out-of-patent drugs) and 

upload these data into ChEMBL and Pharos. Pharos36 is the user interface to the Knowledge 

Management Center (KMC) for the IDG program funded by the NIH. 

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from 

knockouts of these genes in mice have provided insight into gene function and congenital disorders. The 

International Mouse Phenotyping Consortium (IMPC) has published research on the high-throughput 

discovery of novel developmental phenotypes.37 They identified 2,788 genes with 8,241 significant 

phenotype calls in 25 major categories. The promise of the IMPC annotations is illustrated by examining 

the definite and clear links between human neurological and behavioral disorders (191 human genes) 

and the corresponding gene knockout mouse neurological and behavioral phenotypes. The majority of 

these links are for schizophrenia, Alzheimer’s disease, epilepsy, and amyotrophic lateral sclerosis. 

Several rare diseases are also associated with these genes. 

Of 119 Tdark genes prioritized by KMC to IMPC, 45 mouse lines were produced, with 41 phenotypes 

observed. Knockouts of the Tdark kinase Alpk3 have increased embryonic and perinatal lethality, with 

the surviving adults displaying severe heart defects. Of 482 Tbio genes submitted by KMC, 184 mouse 

lines were produced, with 145 phenotypes observed. Knockouts of the Tbio GPCR Adgrd1 display 

reproductive defects. (These are Tdark and Tbio statistics as of April 2017.) Tudor commented: “If you 

don't know very much to begin with, don't expect to learn a lot quickly.” 

Data from Cristian Bologa suggest that on average it takes 15-20 years for Tdark to bear fruit. The leptin 

receptor was Tdark in 1995, but led to an approved drug in 2014. The smoothened receptor was Tdark 

in 1997, and a drug was launched in 2012. Tudor gave several other examples. There is room for 

improvement in research funding. Text mining of all NIH grants for the period 2000-2015 suggests that 

8,858 proteins received zero NIH funding. Of these, 6,051 are Tdark, and 2,616 are Tbio. This is to be 

expected, but 119 are Tchem and 72 are Tclin. Possible explanations could be old drug targets or 

research funded elsewhere. (Data from funding sources other than NIH are not available.) Pharma and 

academia could pay more attention to these 8,858 underfunded proteins. 

Tudor’s second take home message was that just because something is ignored it does not mean it lacks 

importance. Understudied proteins need funding and patience. Based on current evidence, IMPC has 

the most concerted Tdark exploration approach. 

DrugCentral (http://drugcentral.org ) is an open access online drug compendium38 integrating structure, 

bioactivity, regulatory information, pharmacologic actions, and indications for active pharmaceutical 

ingredients approved by regulatory agencies. It integrates content for active ingredients with 

https://ncats.nih.gov/idg
https://www.opentargets.org/
https://www.bindingdb.org/bind/index.jsp
https://www.ebi.ac.uk/chembl/
http://pharos.nih.gov/
http://targetcentral.ws/
http://targetcentral.ws/
http://www.mousephenotype.org/
http://targetcentral.ws/
http://www.mousephenotype.org/data/genes/MGI:2151224
http://www.mousephenotype.org/data/genes/MGI:3041203
http://drugcentral.org/


pharmaceutical formulations, indexing drugs and drug label annotations, and complementing similar 

resources available online. Tudor’s team used it initially to find how many drugs there are, but they also 

wanted to know how many drug targets there are. They have studied innovation patterns per 

therapeutic area:39 

 

They have also examined the commercial impact of target classes by evaluating data from IMS Health on 

drug sales from 75 countries, aggregated over a five-year period (2011–2015). After excluding categories 

such as homeopathic medicines, they identified 51,095 unique products, and mapped them to 1,069 

active pharmaceutical ingredients from DrugCentral, corrected by the number of active pharmaceutical 

ingredients (APIs) per product, then by the number of Tclin targets per API. The most lucrative target 

class from a therapeutic perspective was GPCR (27.42% market share). Tudor also tabulated the top 20 

Drugs distributed by Anatomical Therapeutic Chemical (ATC) codes (levels 1-2). Concentric rings 

indicate ATC levels. Histograms represent the number of drugs distributed per year of first approval. 

http://www.nature.com/nrd/posters/druggablegenome/index.html


targets by revenue. His third take home message was that there are many unexplored opportunities. By 

his conservative estimate (about 15,000 disease concepts, and about 2500 unique drug indications), we 

address about 15% of human diseases with therapeutic agents.  

It has been said that the absence of a quantitative language is the flaw of biological research40 or “the 

more facts we learn the less we understand”. Again, when little is known, we should not expect 

knowledge to accumulate quickly. Separation by organ and cell is a conceptual fallacy. Medicine 

maintains this separation for necessity: by organ (e.g., cardiology or ophthalmology), and by disease 

category (e.g., oncology or infection). NIH Institutes are organized in a similar way. Many 

pharmaceutical companies are organized by therapeutic area. Yet genes, proteins and pathways do not 

observe such separation. The impact of this “mental divide” in science has yet to be understood. 

A. B. Jensen et al. have studied disease correlations and temporal disease progression (trajectories)41 on 

a large scale over 15 years, and grouped 1,171 significant trajectories into temporal patterns centered 

on a small number of early diagnoses that are central to disease progression. Hence it is important to 

focus on early diagnoses in order to mitigate the risk of adverse patient outcomes. The authors suggest 

such trajectory analyses may be useful for predicting and preventing future diseases of individual 

patients. Using data from the Cerner HealthFacts database, Tudor’s team has found that the top 

diseases prior to Alzheimer’s (over 5 years or more) are essential hypertension, hyperlipidemia, Type 2 

diabetes mellitus, hypercholesterolemia, and coronary atherosclerosis. For renal failure, diseases over 

the previous five years are essential hypertension, heart failure, angina pectoris, chronic heart disease, 

and diabetes mellitus. 

Diseases are concepts. They lack physical manifestation outside patients, so the search for cures has to 

be patient centered.42 Animal models should be combined with mining of patient data. We ought to use 

electronic health record data to prioritize targets for further drug discovery. For example, we should get 

genes associated with diseases that precede Alzheimer’s to investigate possible causality. Such priorities 

could be disease-specific, or phenotype-specific. 

It is time to acknowledge that target prioritization for drug discovery is precompetitive knowledge. The 

pharmaceutical industry reward system is based on patents, which are awarded for drugs, not targets. 

Finding a good target leads to the “me-too” phenomenon. It is time to pool resources together on 

targets, team up with Open Targets and create a Target Selection Consortium, partnering industry with 

academia. “Double blind” studies could be cosponsored, to avoid the reproducibility crisis. IDG KMC is 

seeking new knowledge. 

  

https://www.opentargets.org/
http://targetcentral.ws/


Sparse QSAR modeling methods for therapeutic and regenerative medicine 

David Winkler’s award address was co-authored by his colleague Frank 

Burden, now retired from CSIRO, and by co-workers at Imperial College 

London, King’s College London, and the University of Nottingham, whose 

work is acknowledged in the literature references. 

David’s research concerns computational chemistry applied to a molecular 

level understanding of interactions of molecules and materials with biology. 

He has a strong interdisciplinary, translational research focus. His modeling, 

design and optimization of bioactive materials focuses on testing model 

predictions by subsequent experiments. He employs a range of 

computational tools including quantum chemistry, molecular dynamics and mechanics, molecular 

graphics, pharmacophore models, protein docking, and, in the case of this talk, quantitative structure-

property relationship modeling. He is interested in the design of drugs and materials for therapeutic and 

regenerative medicine, especially control of stem cell fate, with a particular focus on the application of 

artificial intelligence (AI), machine learning, pattern recognition, complex systems science, evolutionary 

algorithms and adaptive learning. 

His work has had commercial impact, including the transfer of neural network modeling technology to 

BioRAD Corporation; several field trials candidates with Du Pont and Schering Plough; and clinical trials 

of a radioprotectant drug for cancer radiotherapy patients (with Sirtex and the Peter Mac Cancer 

Institute). He developed core intellectual property (a novel antibacterial target in bacterial replisome) 

for the Betabiotics company spinoff, and discovered a new mechanism for strontium biomaterial-

induced differentiation of mesenchymal stem cells to bone. He carried out a large project with Air 

Liquide Santé on using in silico methods to understand the surprisingly rich biological properties of noble 

gases. He discovered new antifibrotic and antihypertensive agents for Vectus Biosystems (allowing them 

to float on the stock market) and a first in class drug lead for myelofibrosis, which will be further 

developed by a new spin off company soon. 

Winkler’s research thinking was greatly influenced by complex systems science, which finds deep 

mechanistic similarities between areas of science that appear to have nothing in common. Concepts 

include nonlinear dynamical behavior, networks and their attractor states, self-organized criticality, 

chaos, and emergent properties. Complex systems science stimulates substantial lateral thinking and 

novel problem solving. Methods from other areas of science can provide novel solutions to problems in 

drug discovery; and methods developed for drug discovery can provide novel solutions to problems in 

other areas of science, such as biomaterials, gene expression, non-biological materials, and regenerative 

medicine. 

QSAR was invented by Toshio Fujita (very recently deceased) and Corwin Hansch, and rapidly evolved 

into a method for optimization of drugs and agrochemicals. David and Toshio published a recent paper43 

on the two forms of QSAR: “explain” and “predict”. Graham Richards’ and Peter Andrews’ seminal 

commercialization ventures influenced David to make translation a strong focus in his research.  



The research for which David received the Skolnik award involved the application of modern 

computational and mathematical methods to optimizing the QSAR modeling process.44 The first 

operation is to generate descriptors. Model quality is critically dependent on descriptors. Descriptors 

with low or no relevance to the property modeled degrade the model. Bad descriptors were a problem 

in early QSAR work, and there is still a major research need for good descriptors for materials. Next a 

subset of descriptors is chosen for the model in a context-dependent way. Choosing too many subsets 

can give chance correlations. In generating the relationship between the descriptors and the target 

property, model quality is less dependent on the modeling algorithm than on the descriptors, but there 

can be issues in overfitting, overtraining, ambiguity in network architecture, and subjective choices. The 

next operation is validating the performance of the model in predicting properties of new data. Here, 

cross validation and bootstrapping generate optimistic measures of performance, and an independent 

test set not used in training is best. The final operation is making new predictions from the model and 

synthesizing and testing new materials. 

Descriptors are the last major research problem for QSAR. Many (such as DRAGON descriptors) are 

arcane; efficient, interpretable descriptors are needed. Descriptors specific to complex materials are 

essential but the field is embryonic. High throughput characterization data can augment computed 

descriptors.  

There are advantages in removing irrelevant features. Least squares in multiple linear regression (MLR) 

has a Gaussian prior. This can be replaced with a Laplacian prior which effects the removal of 

uninformative weights by driving them to zero. Sparse Bayesian feature selection methods (feature 

selection using expectation maximization) identify a small number of relevant features very efficiently.45   

There are many methods of varying sophistication in finding structure-activity relationships,44 including 

simple linear statistical regression methods such as multiple linear regression; nonlinear regression 

methods using polynomials or nonlinear kernels, and nonlinear machine learning; bioinspired methods 

such as neural nets; support vector machines; and random forests. These have new applications in 

materials, nanotechnology, and regenerative medicine. 

The universal approximation theorem states that neural networks can model any complex relationship 

given sufficient training data. Neural networks are very well suited to modeling of complex data, but 

they have problems such as overfitting and overtraining. They raise an ill-posed problem in statistics 

(instability), and optimum network architecture is ambiguous. The contribution of David and his co-

workers is to develop very robust, self-optimizing sparse feature selection and neural network methods 

that overcome all these problems.46 These methods have been shown to have performance similar to 

that of deep neural networks. 

Sparse Bayesian modeling and feature selection, replacing the Gaussian prior with the Laplacian prior, is 

a general nonlinear modeling method45,47-49 that automatically optimizes model complexity, prunes 

neural network weights to avoid overfitting, and prunes irrelevant descriptors to optimize the 

predictivity of a model. A sparsity-inducing Laplacian prior (LP) was introduced into Winkler’s Bayesian 



Regularized Artificial Neural Network algorithm (BRANN) creating BRANNLP.47,49 Low relevance weights 

are set to zero, and descriptors are also pruned from the model if all weights are zero. 

From selection and mapping, David turned to validation. Cross validation, bootstrapping, and other 

methods give an overly optimistic estimate of predictive power because the test set is not independent 

of the training set. An independent test set never seen by the model is the gold standard. Many 

measures of predictivity have been proposed. Test set validation is actually a simple problem in 

statistics; standard error of prediction, test set (SEP) is preferred over r2 as it is less dependent on 

dataset size and model complexity.46,50 

Methods from other areas of science can provide novel solutions to problems in drug discovery, and 

methods developed for drug discovery can provide novel solutions to problems in other areas of 

science. Implantable medical devices are an example. Bacterial adhesion and growth on biomaterial 

surfaces of joint prostheses, heart valves, shunts, vascular and urinary catheters, and intraocular lenses 

are serious problems in health care. There is a major unmet medical need for new coating materials for 

implantable and indwelling medical devices. David and his co-workers from Morgan Alexander’s 

research team at the University of Nottingham have used machine learning methods to derive 

quantitative models relating the molecular structure of a polymer to the attachment of the bacteria to 

that polymer surface. These models can be used to screen large databases of new materials for those 

with low pathogen attachment. 

Hook et al. have detected the attachment of selected bacterial species to 576 polymeric materials in a 

high-throughput microarray format.51 In work by David and his colleagues, data from a large polymer 

microarray exposed to three clinical pathogens were used to derive robust and predictive machine 

learning models of pathogen attachment.52 The BRANN models can predict pathogen attachment for the 

polymer library quantitatively. The models also successfully predict pathogen attachment for a second-

generation library, and identify polymer surface chemistries that enhance or diminish pathogen 

attachment. A manuscript on work on multiple pathogen attachment models has been submitted. 

Sparse feature selection methods have also identified a new mechanism for strontium biomaterial-

induced differentiation of mesenchymal stem cells to bone. Strontium ranelate (Protelos) is a drug 

approved in the European Union for the treatment and prevention of osteoporosis. It reduces risk of 

vertebral and non-vertebral fractures in post-menopausal women. Although controversial, it is reported 

to have an anabolic and anti-catabolic effect on bone. Strontium ion’s mechanism of action is not fully 

understood, but it is thought to up-regulate differentiation of osteoprogenitors or stimulate bone 

formation.53-55   

David and his Imperial College co-workers,56 Molly Stevens, Eileen Gentleman and Hélene Autefage, 

have evaluated the global response of human mesenchymal stem cells to strontium-substituted 

bioactive glasses using a combination of unsupervised biological and physical science techniques. Their 

objective analyses of whole gene-expression profiles, confirmed by standard molecular biology 

techniques, revealed that strontium-substituted bioactive glasses up-regulated the isoprenoid pathway, 

suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. 



In future, David hopes to see exploitation of new AI methods such as deep learning; improved 

descriptors for molecules that are effective and interpretable; exploitation of evolutionary methods of 

discovery aided by robotics; synergy of AI and evolutionary methods for adaptive evolution; adoption of 

in silico methods from drug discovery for materials and regeneration; development of autonomous or 

semiautonomous “closed loop” design methods; and more effective exploration of vast molecular or 

materials spaces. 

Deep learning was predicted to be a breakthrough technology in 2013. Deep neural networks are not 

necessarily magic. According to the universal approximation theorem, a feed-forward network with a 

single hidden layer containing a finite number of neurons can approximate any continuous function, 

under mild assumptions on the activation function. This was first proved by Cybenko in 1989 for sigmoid 

activation functions. Hornik showed in 1991 that it is not the choice of the activation function, but the 

multilayer architecture itself which gives neural networks the potential of universal approximators.46 

Deep learning methods have generated impressive improvements in image and voice recognition, and 

are now being applied to QSAR and QSAR modeling. A recent publication46 describes the differences in 

approach between deep and shallow neural networks, compares their abilities to predict the properties 

of test sets for 15 large drug datasets, discusses the results in terms of the universal approximation 

theorem for neural networks, and describes how deep neural networks may ameliorate or remove 

troublesome “activity cliffs” in QSAR datasets. Materials space is vast and at least in some of its many 

dimensions, the fitness landscape is smooth. This allows adaptation, one step (one mutation) at a time. 

Evolution and machine learning can be combined in adaptive learning (the Baldwin effect).  

A recent review discusses the problems of large materials spaces, the types of evolutionary algorithms 

employed to identify or optimize materials, and how materials can be represented mathematically as 

genomes.57 It describes fitness landscapes and mutation operators commonly employed in materials 

evolution, and provides a comprehensive summary of published research on the use of evolutionary 

methods to generate new catalysts, phosphors, and a range of other materials. Another recent paper 

describes the materials genome in action.58 

Machine learning methods have achieved wide applicability for example, in aqueous solubility of 

drugs59; polymers for stem cell growth;60 cubane as a benzene isostere,61 benign organic corrosion 

inhibitors;62 markers for stem cell division;63 materials for stem cell factories;64 adverse effects of 

nanomaterials;65 anticancer farnesyltransferase inhibitors;66 and prediction of materials properties.44 

In summary, AI tools developed for therapeutic medicine also work well for regenerative medicine. 

Neural networks are machine learning methods that are very applicable to (bio)materials design. The 

universal approximation theorem means that deep learning methods should not be superior to shallow 

neural networks for molecular design. Bayesian regularized neural networks can generate robust, 

predictive models of many types of materials and properties. Sparse Bayesian feature selection methods 

can reduce the dimensionality of problems, improve interpretability, and generate robust models with 

better predictivity. Evolutionary methods, combined with machine learning (adaptive evolution) can find 

effective materials quickly and efficiently. 

https://en.wikipedia.org/wiki/Baldwin_effect


Conclusion 

Erin Davis, chair of the ACS Division of Chemical Information, formally presented the Herman Skolnik 

Award to David Winkler at a reception held in honor of David, following the symposium. 
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