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Herman Skolnik Award Symposium 2019, Honoring Kimito Funatsu 

A Report for the Chemical Information Bulletin by Wendy Warr 

Prof. Kimito Funatsu was selected to receive the 2019 Herman Skolnik Award for his contributions to 
structure elucidation, de novo structure generation, and applications of cheminformatics methods to 
materials design and chemical process control. His seminal contributions include the conceptualiza-
tion and implementation of algorithms and expert systems for structure elucidation and chemical syn-
thesis design, systems which have been extensively applied in the pharmaceutical industry. In recent 
years, he has increasingly focused on inverse QSAR analysis, including de novo structure generation, 
and the development of the soft sensor methodology for chemical process control. The latter approach 
represents another example of ground-breaking research with immediate practical and industrial appli-
cation potential. 

Kimito has secured large amounts of funding from the chemical and pharmaceutical industries to drive 
large-scale collaborative projects at the interface between academia and industry, most recently in the 
context of the CREST Program on Big Data Applications, funded by the Japan Science and Technolo-
gy Agency. With more than 200 peer-reviewed publications, and a plethora of presentations and con-
ference contributions, Kimito is among the core of leaders of the chemical information and informatics 
field worldwide. 

He obtained his doctoral degree in physical organic chemistry from Kyushu University in 1983, and 
joined Prof. Shinichi Sasaki’s group at Toyohashi University of Technology in 1984. During his time 
with that group, he worked on a variety of cheminformatics applications including the structure elucida-
tion system CHEMICS,1 the organic synthesis design systems artificial intelligence for planning and 
handling organic synthesis (AIPHOS)2 and knowledge base-oriented synthesis planning system 
(KOSP),3 and other systems in the areas of de novo design, and chemogenomics. In 2004, he moved 
to the University of Tokyo to continue research in these areas as a full professor, and there he ex-
panded into material design and soft sensors for monitoring and controlling chemical plants.4 In addi-
tion to his professorship, he is the research director of the Data Science Center at the Nara Institute of 
Science and Technology (NAIST). 

Kimito initiated the tradition of organizing biannual international cheminformatics schools in Japan. He 
also initiated the Computer-aided Chemistry Forum for scientific communication and practical training 
in cheminformatics, and established the Japanese Society of Cheminformatics. His relentless commu-
nity service efforts also include his tenure as the President of the Division of Chemical Information and 
Computer Sciences of the Chemical Society of Japan (2004–2014). He has received several awards 
in recognition of his many contributions, including awards from the Japan Information Center of Sci-
ence and Technology in 1988, from the Society of Computer Chemistry Japan in 2003, and from the 
Society of Chemical Engineering in 2017.  

Kimito was invited to present an award symposium at the Fall 2019 ACS National Meeting in San Die-
go, CA. There were 10 speakers, in addition to Kimito himself. 

Introduction 
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Monitoring progress in lead optimization 

Jürgen Bajorath of the University of Bonn presented a computational method 
termed Compound Optimization MOnitor (COMO)5 that helps to determine if further 
optimization progress can be expected for a given analogue series (AS) or if suffi-
cient numbers of analogues have been generated. In COMO, virtual analogues 
(VAs) are used to populate the chemical space around an AS; chemical neighbor-
hoods (NBHs) of analogues are defined, and VAs falling inside and outside NBHs 
are determined; potency distributions of analogues are analyzed; lead optimization 
relevant properties of analogues are evaluated; and multiple scores are calculated 
to quantify AS progression. 

To produce VAs, the core of an AS is decorated with more than 16,000 substituents extracted from 
ChEMBL, applying 12 retrosynthetic (RECAP)6 rules. The VAs are sampled using RECAP-rule-
compliant substituents and hydrogen atoms. A large number of analogue series from different sources 
have been studied, and alternative chemical space representations and virtual analogues of different 
designs have been explored.7 

Coverage of chemical space around ASs has been estimated by defining NBHs of experimental ana-
logues and screening these NBHs with virtual compounds.7,8 To evaluate compound distributions in 
AS-centered chemical space and across NBHs of analogues, distances are calculated. The distance 
between two compounds is given by the Euclidean distance between two multidimensional vectors 
encoding molecular properties. VAs may or may not map to NBHs of existing analogues, and VAs 
may be located in overlapping NBHs (Figure 1).  

L to R: Shigehiko Kanaya, Yoichi Zushi, Yukihiko Uchi, Yuya Takeda, Yoshihiro Yamanishi 
(back row), Kimito Funatsu, Kenji Hori (back row), Gisbert Schneider (back row), Kiyoshi 
Hasegawa, Manabu Sugimoto, Jürgen Bajorath (pictured as insert) 
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To evaluate lead optimization progress, it must be determined how extensively chemical space around 
a given AS is covered, and how densely an AS samples the covered space (chemical saturation), and 
whether analogues display significant potency variations (SAR progression). Varying potency of struc-
tural analogues indicates SAR discontinuity. 

A COMO scoring scheme5 was developed for profiling ASs that addresses the questions of chemical 
saturation and SAR progression. The chemical space coverage score (C) quantifies the VA coverage 
of all NBHs; the coverage density score (D) measures the VA coverage of overlapping NBHs; and the 
chemical saturation score (S) combines C and D (2CD/C+D). 

The SAR progression score (P) quantifies potency variations of analogues sharing VAs in their NBHs. 
It is a VA-dependent measure of local SAR discontinuity. The SAR heterogeneity score (H) relates the 
potency distribution of analogues with overlapping NBHs to the mean potency of the AS. It is a VA-
independent measure of global SAR heterogeneity. The multiproperty score (M) evaluates multiple 
compound properties. It is independent of the COMO scoring formalism, and includes a “traffic light” 
score for each individual ADME property of any active analogue. 

Figure 2 shows exemplary analogues of a series of ATPase inhibitors, and virtual analogues falling 
into their NBHs. There are nine VAs, four NBHs, and three VAs in NBHs. Two of the VAs are in over-
lapping NBHs. 
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Figure 1.  Neighborhood analysis 

Coverage (3/9) C = 0.33 

Density 1-1/(6/3) D = 0.50 

Saturation   S = 0.40 

SAR Progression P = 0.66 

SAR Heterogeneity H = 0.69 

Figure 2. Exemplary analogues belonging to a series of ATPase inhibitors (black), and their NBHs (light blue), 
and virtual analogues (red) falling into the NBHs. 
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Finally, Jürgen presented some unpublished work on analogue series profiling, in which his team stud-
ied 72 ASs, extracted from ChEMBL 24, with 1-6 substitution sites and 50-148 analogues. It was 
found that S and P scores are largely insensitive to varying VA counts. The standard VA population 
size was 3000 VAs. With increasing NBH radii, saturation increases and differentiates ASs (for 72 ASs 
and 3000 VAs). The standard NBH radius threshold (the distance threshold for the top 1% of closest 
pairwise distances between virtual analogues) was 1.0 (1st percentile). P scores change very little be-
cause they largely depend on the potency distribution of existing analogues falling into overlapping 
neighborhoods. A plot of P score against S score, with points sized by AS size and colored by M 
score, shows that S and P scores are uncorrelated and do not scale with AS size. It also shows that 
scoring differentiates between series with different chemical saturation and SAR progression charac-
teristics. 

COMO also includes a compound design component. VAs serve a dual role as diagnostic compounds 
and candidates for lead optimization. Virtual analogues generated for chemical saturation analysis 
provide a pool of candidates for synthesis. COMO can be combined with machine learning to produce 
predictive models for VA selection. Support vector regression is being used for potency prediction of 
VAs. The methodology is easily expandable to include multiple optimization of relevant properties. 
Practical applications are underway. 
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Electronic-structure informatics using 3D descriptors of molecules 

Manabu Sugimoto of Kumamoto University began by paying tribute to Kimito Fu-
natsu and other great scientists who have inspired us. He explained that electronic
-structure informatics is a discipline which obtains chemical information from elec-
tronic structures and the responses of molecules. It has been applied by great sci-
entists to structure-reactivity relationships, structure-activity relationships, and 
structure-property relationships. 

Years ago, Manabu, working with Prof. Hiroshi Nakatsuji, and studied metal NMR 
chemical shifts with an ab initio molecular orbital method9 to establish a reliable 
method of calculating those shifts and to clarify electronic mechanisms and origins 

of the shifts. They found that both ground and excited states are important for quantitative structure-
property relationships. 

The Hubbard-Holstein model is a simple model to describe the behavior of solid crystalline materials 
by considering the action of electrons and phonons on a lattice. It is a combination of the Hubbard 
model (electrons on a lattice) and the Holstein model (phonons and their interactions with electrons on 
a lattice). The Hamiltonian for the Holstein model has the same first term as the Hubbard model (i.e., 
the electron hopping) but has two new terms concerning phonons. Electron-phonon coupling is im-
portant in the understanding of various chemistries, such as hole transport materials,10 organometallic 
chemistry,11 and organic light emitting diodes.12 

Both molecular structure and molecular properties are related to electronic structure, so, there is the 
possibility of doing cheminformatics as quantum chemists would. Energy is the secret. In a chemical 
reaction, the energy falls from the reactant state, then rises to the transition state, and then falls again 
as the products are formed. The theory of chemical equilibrium tells us that biological activity can be 
related to “energy changes”. 

Until recently, most of the descriptors that Manabu and his colleagues have been applying correspond 
to spectroscopic features of molecules. This set of descriptors has limitations in describing three-
dimensional features related to molecular recognition. Therefore, for efficient cheminformatics model-
ing, Manabu now suggests three dimensional descriptors, which represent topological features of in-
teraction energy surfaces and molecular orbitals, and coarse-grained descriptions of three dimension-
al features of molecules (Figure 3). 
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Electronic states to be considered are neutral spin-singlet ground (S0) state; neutral spin-singlet excit-
ed (Sn) states; lowest neutral spin-triplet excited (T1) state; ionized (cation) state; and electron-
attached (anion) state. Molecular size is also important, for example, in ligand-target docking. The 
main contributors to intermolecular interaction energy are intermolecular distance, excitation energy, 
and transition dipole moment. Again, Manabu emphasized that both ground and excited states are 
important for quantitative structure-property relationships. Solvation-desolvation energy is important in 
ion exchange phenomena. 

Manabu briefly described four applications of these 3D descriptors. Toshi Ideo has studied polyphe-
nols as fatty acid synthase (FASN) inhibitors and has obtained a coefficient of determinants (R2) of 
0.9098 between experimental and predicted logIC50. For some terpene antibacterial reagents, an R2 of 
0.763 was obtained for experimental versus predicted logMIC (minimum inhibitory concentration). The 
descriptors were rather less successful in predicting the biological activity of some chemicals regulat-
ing food intake. 

The fourth application, carried out by Alga Manggara, concerned acute aquatic toxicity of 33 alkylphe-
nols. Toxicity is related to both chemical and physical descriptors. The model predicts the concentra-
tion of a substance that inhibits 50% of the growth (IGC50) of a Tetrahymena pyriformis population 
within a designated period. A dataset from Cronin et al.13 was used. A correlation matrix for the 29 de-
scriptors evaluated for the alkylphenols showed strong correlation between certain pairs. Some corre-
lating descriptors were eliminated to give five descriptor sets with the following results: 

 Electronic + Size (R2 = 0.950) 
 Electronic + Size + (MO + Charge + Reactivity + Physical) version 1 (R2 = 0.929) 
 Electronic + Size + (MO + Charge + Reactivity + Physical) version 2 (R2 = 0.946) 
 Electronic (R2 = 0.798) 
 Electronic + (MO + Charge + Reactivity + Physical) (R2 = 0.820) 

Different regression models were obtained for the five sets because B, M, and EA (see Figure 3) are 
mutually correlated. The size of the alkyl group is important to the mechanism of action: smaller IGC50 
leads to larger pIGC, larger B, larger M and smaller EA (lower LUMO). 
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Figure 3. 3D descriptors 
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In summary, Manabu described a new set of quantum chemical descriptors of molecules designed to 
describe three-dimensional features. He presented some applications showing reasonable correla-
tions with experiments. In work on acute aquatic toxicity of alkyl phenols, the regression models were 
different for different descriptor sets because of strong correlation between descriptors. 
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Fast evaluation of potential synthesis routes using DFT calculations on the basis of Transition State Data-

base (TSDB) 

Four research groups are involved in a Japan Science and Technology Agency (JST) 
Core Research for Evolutionary Science and Technology (CREST) project 
“Development of a knowledge-generating platform driven by big data in drug discov-
ery through production processes”. Makoto Taiji’s team at Riken first makes a very 
large scale virtual library (VLSVL) of drug candidate molecules, and adds synthetic 
routes and physicochemical properties. Yasushi Okuno’s group at Kyoto University 
takes information from the Riken group, studies ligand protein interactions, and pass-
es back potential drug candidates to Riken. Kenji Hori of Yamaguchi University works 
on the rapid evaluation of the feasibility of synthetic routes, and shares routes and 
physicochemical properties with the Riken group. Kimito Funatsu’s group at Tokyo 

University is concerned with process control and the operation of chemical plants. They interact both 
with the Riken group and with Kenji’s group. 

Kenji spoke about his own contributions. He described a procedure for in silico screening for synthesis 
routes. Systems such as Kimito’s transform-oriented synthesis planning system (TOSP),14 and 
knowledge base-oriented synthesis planning system (KOSP)3,14 usually offer many routes for any one 
target molecule. It may be hard to decide which route to try first and to confirm whether, in practice, 
the selected route actually produces the desired target. In silico screening addresses these problems.  

Initially, organic chemists do a preliminary screening to select fewer than 10 potential reactions. These 
are the input for the in silico screening process, where transition state (TS) searches of the main and 
side reactions are carried out, and the Gibbs free energy of activation (ΔG‡) is calculated. The reac-
tions selected by this process are analyzed in more detail by estimation of solvent effects and study of 
the effectiveness of the route. The output is a set of ranked synthesis routes for experimental study. 
Kenji’s team has reported several successful implementations of this process.15-17 

The benefit of in silico screening is to exclude experiments which are unlikely to produce the target, 
dramatically decreasing the number of experiments needed and shortening the time spent on synthe-
sis route development. Since it takes a long time to search TSs for reactions, Kenji aimed to shorten 
the CPU times for TS optimizations. Information on similar reactions is extremely useful in locating 
TSs, and, to obtain it, a database including TS information is needed.  

Kenji’s team has gathered information on chemical reactions such as molecular names, keywords, 
optimized coordinates, and log files of quantum mechanical calculations and has constructed a Quan-
tum Mechanical Calculations Results Database (QMRDB). The data in QMRDB are used to construct 
another database, the Transition State Database (TSDB).17 The PostgreSQL program is used for data 
handling, and the Open Babel program for molecular structure retrieval. The databases are searched 
in a Web browser. 

The team has developed a cloud system for managing the databases and theoretical calculations. The 
user enters a SMILES string in a program called cStructure, on a Windows client, to search TSDB for 
mechanisms which use a similar reactant, or produce a similar product. The Tanimoto coefficient, TS 
coordinates, a chemical equation, and ΔG‡ and ΔG values are returned by the database server in the 
cloud. iStructure, a program on the client, adds substituents at accurate positions and produces the  
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input for the Gaussian09 program, which is run on the server. A procedure has been developed in the 
iStructure program to create an initial structure for TS optimization for complicated targets, starting by 
downloading simple TS coordinates. 

Kenji outlined how quantum chemistry assisted synthesis route development can contribute to syn-
thetic chemistry in the 21st century. Synthesis planning systems usually offer many routes for a given 
molecule. In silico screening can drastically reduce the many possible routes to a few of the most fea-
sible for experimental work. If the target is indeed obtained by actual synthesis, further work can be 
carried out, such as physicochemical property calculation. If the target is not obtained, feedback on 
the experimental results is passed to the in silico screening system. 

In an example, target molecules from the VLSVL are sent to the Okuno team for deep learning predic-
tions and docking calculations. The resulting drug candidates are passed to the in silico screening 
system. Ranked synthesis suggestions from that system are tested in synthetic experiments, and bio-
assays are carried out on compounds successfully synthesized. Active compounds are submitted for 
further investigation; data on inactive compounds are fed back into the docking system. 

Molecules in the VLSVL were created by applying name reactions to molecules in a library of druglike 
molecules. Corresponding mechanisms were first examined to confirm whether or not TSs for the re-
actions existed. It is necessary to evaluate the toxicity of candidate molecules from the VLSVL using 
medicinal chemistry knowledge, and toxicity predictions are required to select potential candidates in 
the VLSVL and thus reduce the computational time needed for screening. It is very easy to construct 
initial structures of transition states using the iStructure program, but alternative synthesis routes have 
to be created when the synthesis route for the VLSVL is confirmed not to produce the target mole-
cules. The TOSP and KOSP programs are used to suggest alternatives. Kenji presented two specific 
examples where the calculation of ΔG‡ and ΔG for a transition state successfully supports the choice 
of alternative routes. 

The design of new functional molecules is easy, but the development of their real synthesis routes is 
very difficult. Effort should be devoted to reducing the time wasted at this stage. Kenji gave three rea-
sons why the synthetic routes from synthesis planning systems are not guaranteed to produce the tar-
gets: the precursors are much more complicated than the targets themselves; the number of synthesis 
routes diverges in multistep routes; and the reaction may not produce the target as the main product. 
A check based on cheminformatics can suggest a route that is likely to produce the desired target. It is 
possible to produce all the plausible products for a given set of reactants by using an appropriate re-
action SMARTS. 

Kenji closed by presenting an innovation cycle for developing functional molecules (Figure 4). AI mo-
lecular design suggests targets with the desired physicochemical properties and has a strategy for im-
proving the functions of molecules. Synthesis routes from synthetic planning systems are produced 
but are not guaranteed to produce the targets. At the end of the cycle, results of the measurement of 
physicochemical properties of the targets are fed back into the AI system. The missing link is the con-
nection of AI molecular design and in silico synthesis route development to the measurement of physi-
cochemical properties of targets. 
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Figure 4. Innovation cycle for developing functional molecules  

The missing link involves theoretical calculations, transition state searches, judgment on the basis of 
calculated ΔG‡, and ranking synthesis routes. Experimental work can then confirm a synthesis route, 
and increase the yield of the reaction. The results of the experimental work are fed back into the theo-
retical calculation system. This whole subcycle, an innovative process for synthesizing targets, is the 
missing link which connects AI molecular design (followed by route development) to the measurement 
of physicochemical properties of targets.  
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Development using materials informatics in Japanese companies 

The Materials Genome Initiative (https://www.mgi.gov) is a U.S. multi-agency initia-
tive designed to create a new era of policy, resources, and infrastructure that sup-
port U.S. institutions in the effort to discover, manufacture, and deploy advanced 
materials twice as fast, at a fraction of the cost. When it was launched in 2011, the 
impact in Japan was significant, and similar efforts began in Japan. The discipline 
of materials informatics is perceived as new by some people, but Kimito Funatsu 
has long been working on the application of cheminformatics methods to materials 
design and chemical processing, and has laid the foundations of materials infor-
matics. 

Yukihiko Uchi of Asahi Kasei Corporation described work done in his own company in collaboration 
with Kimito’s team (http://www.mssj.jp/conf/62/program/2P-33.html). They have developed a structure 
prediction method for unknown compounds using two types of gas chromatography simultaneously 
plus mass spectrometry (GC x GC/MS) and quantitative structure-retention relationship (QSRR) in-
verse analysis models. Two-dimensional gas chromatography (GC x GC) is a gas chromatography 
technique that uses two different columns with two different stationary phases. The basic assumption 
of QSRR is that the retention time of GC has some correlation with various physical properties of com-
pounds.18 

In forward analysis, a correlation model is built from known structures and their retention times. In in-
verse analysis, humans decide on the substructures that might represent key peaks in the MS of an 
unknown compound, and a structure generation program is used to generate plausible full structures. 
A correlation model is then used to predict the retention times for those structures, for comparison with 
the observed retention times. The quality of the decisions made about substructures depends on the 
experience and ability of the individual making the decision. 

https://www.mgi.gov
http://www.mssj.jp/conf/62/program/2P-33.html
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A second verification example is shown in Figure 6. There were 72 candidate structures. The correct 
candidate was ranked third with retention times of 47.0 minutes and 4.8 seconds. (The candidates 
ranked first and second had retention times of 44.7 minutes and 4.5 seconds; and 46.3 minutes and 
4.5 seconds.) 
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Compound for verification

Substructures chosen from MS

Nonpolar retention time 37.5 minutes
Medium polarity retention time 3.8 seconds 

Figure 5. Inverse analysis verification example

Figure 5. Inverse analysis verification example. 

In work done by Yukihiko’s colleagues, the first GC column has a nonpolar stationary phase (for boil-
ing point separation), and the second column has a medium polarity phase (for polarity separation). 
There are two different retention times from the two columns. In forward analysis, molfiles of stand-
ard compounds are given Dragon6 descriptors (http://talete.mi.it/index.htm), the two retention times 
for each compound are measured, and a model is built for each type of retention time, using ensem-
ble partial least squares regression. Excellent agreement was obtained between predicted and ob-
served nonpolar retention times (R2 = 0.94); the agreement was not quite so good for medium polari-
ty retention time (R2 = 0.54). 

The structure generation algorithm used in inverse analysis is Chemish (http://
www.cheminfonavi.co.jp/chemish/), developed in Kimito’s laboratory. Molfiles for the candidate struc-
tures output by Chemish are given Dragon6 descriptors; a correlation model is used to predict the 
retention times for those structures; those retention times are compared with the measured ones; 
and candidate structures with times close to those of the unknown compound are ranked in order of 
probability. 

Yukihiko presented two verification examples. The first is shown in Figure 5. The correct candidate 
was ranked 23rd among 359 structures and had retention times of 36.7 minutes and 5.2 seconds. 
(The first and second choices had retention times of 37.6 minutes and 4.7 seconds; and 37.1 
minutes and 5.0 seconds.) 

http://talete.mi.it/index.htm
http://www.cheminfonavi.co.jp/chemish/
http://www.cheminfonavi.co.jp/chemish/
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In this study, QSRR is a technology that has potential but still needs improvement. The accuracy of 
the prediction model is not good enough when using the medium polarity column, and the accuracy of 
the substructure generation depends on the ability of an individual. 

In materials development at Asahi Kasei Corporation, 10 types of raw materials have been selected 
from 80 possible types and, until now, have been advanced based on human intuition and experience.  
There are innumerable combinations to determine the ratio of the amounts of materials. It is possible 
to reduce the number of trials and errors by using informatics technology such as the inverse QSAR 
technology described here. Using cheminformatics is a response to the era of data-driven material in-
formatics. 
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Compound for verification

and/or

C4H9

Figure 6. Second verification example

First retention time 42.0 minutes
Second retention time 3.2 seconds

Figure 6. Second verification example. 

Yoichi Zushi and Yuya Takeda of Kaneka Corporation discussed two differ-
ent examples: the development of a soft sensor in a thin-film photovoltaic 
(PV) deposition process, and the development of a prediction and control 
method of an organic, light-emitting diode (OLED) deposition process. 

A thin-film solar cell (Figure 7) is made by depositing one or more thin layers 
of photovoltaic material on a substrate, such as glass, plastic, or metal. 
Amorphous silicon is a non-crystalline, allotropic form of silicon and the most 

well-developed thin film technology to date. A new attempt to fuse the advantages of bulk silicon with 
those of thin-film devices is thin-film polycrystalline (PC) silicon on glass. These types of thin-film cell 
are mostly fabricated by a technique called plasma-enhanced chemical vapor deposition (CVD). Post-
processing such as laser treatment or sputtering follows. 

Prediction and control of a vacuum deposition process by a data-driven method 

Figure 7. Thin-film silicon photovoltaic cell 
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PV efficiency greatly depends on the deposition conditions of silicon layers. Material gas flow rate, 
chamber pressure, and radio frequency power are each controlled by a device, but substrate tempera-
ture is indirectly adjusted with a heater and is affected by CVD operating status. The temperature falls 
sharply as polycrystalline silicon follows amorphous silicon. It is important to control the substrate tem-
perature during deposition. In practice, the substrate temperature is difficult to measure online be-
cause there is a vacuum inside the process chamber, and there is no space for sensor installation, 
etc. A soft sensor was thus developed. 

The modeling conditions are as follows. The response variable is substrate temperature. The data are 
acquired by pasting a thermocouple on the substrate, connecting it with the temperature logger, input-
ting it into the process chamber, and following the temperature during a few hours for the deposition 
batch. Explanatory variables (about 300 of them) are related to the dynamic characteristics of measur-
able material gas flow rate, chamber pressure, radiofrequency power, and panel heater temperature. 
Each process data item affects the substrate temperature with a time delay. Substrate temperature 
data are acquired under changing deposition conditions. 

The first prediction model was created based on the time from the start of the batch, but an accurate 
prediction model could not be obtained due to the small amount of data. The data were therefore di-
vided according to the features of each of the process steps, and multiple prediction models were cre-
ated. The modeling method was partial least squares. The substrate temperature was then predicted 
accurately over time. Excellent agreement was obtained between predicted and observed values (R2 
= 0.993, RMSE = 0.90).  

An online monitoring system was developed for the predicted substrate temperature. In short, the 
team developed a substrate temperature soft sensor during deposition with a small amount of data. 
The substrate temperature is predicted online, and the substrate temperature is stabilized by monitor-
ing and control. 

The second part of this presentation concerned a prediction and control method for an OLED device 
deposition process. The performance of OLED devices depends on the deposition process of organic 
materials. More than 24 hours are needed from the start of the deposition process until quality inspec-
tion, so quick feedback is prevented. There are quality specifications such as brightness, driving volt-
age, and color etc., but they have a trade-off relationship, so it is difficult to decide on operating condi-
tions. The researchers developed a prediction and inverse analysis method to decide on operating 
conditions. The objective was to take the data from the quality inspection process, and feed them into 
an AI-based system to produce quality prediction and monitoring data and operating conditions that 
could be used in the next organic materials deposition experiment; the cycle then could be reiterated. 

In the model, the explanatory variables (x), such as temperature and pressure, are a function of the 
response variables (y), such as voltage and brightness. Methods such as partial least squares, gradi-
ent boosting, support vector regression, ElasticNet, and random forest were used to build the model. 
In the inverse analysis, conditions (x) that satisfy the quality requirements (y) with the model were ob-
tained, as were constraints on the conditions such as boundary and time. Multiobjective optimization 
using a genetic algorithm was then used to propose new operating conditions. 

Machine learning models were obtained that were sufficiently accurate. The speaker showed good 
straight line plots for predicted versus experimental values for a number of y variables in training and 
test set prediction. In the inverse analysis and multiobjective optimization using a genetic algorithm, if 
the manipulated variables were randomized all at once, in some cases, the researchers failed to ob-
tain values of x when y satisfied the requirements. This was because the OLED lighting device has a 
layered structure (anode, organic layer, lighting layer, organic layer, lighting layer, organic layer, cath-
ode), and there are strongly related variables in each layer. A new method was therefore used where  
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the variables were grouped by layer. This method worked much better. The core technology of this 
system can be used in other cases, and the prediction and inverse analysis method will be used for 
other processes in future work at Kaneka. 
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Gisbert Schneider of ETH Zurich, Switzerland, recently co-authored a paper19 with 
Kimito Funatsu and others, which stated that QSPR and QSAR are shifting from a 
mere prediction of property or activity towards design. Gisbert started his talk by 
summarizing three approaches20,21 to the issue in drug design of “what to make 
next”. The chemist uses expert knowledge and intuition, with the knowledge rep-
resented both explicitly and implicitly. The “rational machine” uses rules and 
chemical transformations, where the knowledge representation is explicit. The 
“intuitive machine” uses distribution sampling, with implicit (probabilistic) 
knowledge representation. 

Gisbert’s first de novo design approach for small molecules, the TOPology-Assigning System 
(TOPAS),22,23 was based on (al)chemical transformations. The World Drug Index was fragmented by 
RECAP6 into 25,563 unique building blocks which could be recombined to make new molecules. 

Later Schneider’s team developed a reaction-based de novo design system, Design of Genuine Struc-
tures (DOGS).24,25 The compound construction procedure explicitly considers compound synthesiza-
bility, based on a compilation of 25,144 readily available synthetic building blocks and 58 established 
reaction principles.26 This enables the software to suggest a synthesis route for each designed com-
pound. A combinatorial explosion in the structure generator is prevented by machine learning models, 
heuristics, and intuition. DOGS has been used successfully in the de novo design of small molecules 
as natural product mimetics. Further applications of DOGS have been published recently.27 

In an article in the Toronto National Post published on May 30, 2019, and updated on June 6, 2019, 
Joseph Brean quotes David Gunkel, a philosopher of robotics and ethics at Northern Illinois Universi-
ty. Gunkel said “We are now at a point where we have AI [systems] that are not directly programmed. 
They develop their own decision patterns.” 

Very recently Gisbert’s team has reported a method for de novo design that uses generative recurrent 
neural networks (RNN) containing long short‐term memory (LSTM) cells.28,29 This computational mod-
el captured the syntax of molecular representation in terms of SMILES strings with close to perfect 
accuracy. The SMILES strings were from compounds in ChEMBL with nanomolar activity. The “deep-
learned” pattern probabilities can be used for de novo SMILES generation by fragment growing. This 
molecular design concept eliminates the need for virtual compound library enumeration. By employing 
transfer learning, the general RNN model was fine‐tuned on recognizing retinoid X and peroxisome 
proliferator‐activated receptor (PPAR) agonists.29 Five top‐ranking compounds designed by the gener-
ative model were synthesized. Four of the compounds revealed nanomolar to low‐micromolar receptor 
modulatory activity in cell‐based assays. Apparently, the computational model intrinsically captured 
relevant chemical and biological knowledge without the need for explicit rules. 

A very recent development is a bidirectional RNN-LSTM model. In the past, SMILES strings were gen-
erated from the generation point towards the right; now the method works as in Figure 8. The novelty 
of valid SMILES generated was 92 ± 2 % for the unidirectional RNN-LSTM model, and 97 ± 3 % for 
the bidirectional RNN-LSTM model. 

Designing synthesizable, bioactive compounds with chemistry-savvy machine intelligence 
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Schneider’s team is now exploring the capability of “chemistry-savvy” machine intelligence to generate 
synthetically accessible molecules in Design of Innovative NCEs Generated by Optimization Strate-
gies (DINGOS).30 This is a virtual assembly method that combines a rule-based approach (predicting 
building blocks for synthesis) with a machine learning (neural network) model trained on successful 
synthetic routes described in chemical patent literature. This unique combination enables a balance 
between ligand similarity based generation of innovative compounds by scaffold hopping and the for-
ward-synthetic feasibility of the designs. In a prospective proof-of-concept application, DINGOS suc-
cessfully produced sets of de novo designs for four approved drugs that were in agreement with the 
desired structural and physicochemical properties. Target prediction indicated more than 50% of the 
designs to be biologically active. Four selected, computer-generated compounds were successfully 
synthesized in accordance with the synthetic route proposed by DINGOS. The results of this study 
demonstrate the capability of machine learning models to capture implicit chemical knowledge from 
chemical reaction data, and suggest feasible syntheses of new chemical matter.  

Valid chemical structures with explicit synthesis routes are produced, in a synthesizable chemical 
space, with implicit reactivity scoring. The reaction forecasting involves node expansion with DINGOS, 
navigation with Monte Carlo Tree Search, and use of a reward, or “scoring function” (e.g., similarity to 
the template, or activity prediction). Gisbert coined the term DinGO in order to allude to the game 
“GO” played in DeepMind’s Alpha Go Zero.31 DinGO plays the “what if?” game. 

Another of Gisbert’s projects uses deep convolutional neural networks (CNNs). His team has pub-
lished32 a hybrid CNN approach for molecular pattern recognition in drug discovery. Using self-
organizing map images of molecular pharmacophores as input,33,34 CNN models were trained to iden-
tify C-X-C chemokine receptor type 4 (CXCR4) modulators with high accuracy. The machine learning 
classifier identified first-in-class, synthetic CXCR4 full-agonists. Additional macromolecular targets of 
the small molecules were predicted in silico and tested in vitro, revealing modulatory effects on dopa-
mine receptors, and chemokine receptor type 1 (CCR1). These results positively advocate the ap-
plicability of molecular image recognition by CNNs to ligand-based, virtual compound screening, and 
demonstrate the complementarity of machine intelligence and human expert knowledge. 

Gisbert concluded with some comments on the applicability of AI. We can expect several things from 
AI-driven molecular design: readily synthesizable, inspiring designs; similar success with rule-driven 
and data-driven AI; and better decisions for “failing early” and “choosing wisely”. We cannot expect 
drugs from scratch, or flawless prediction models.20,21 
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Figure 8. Bidirectional RNN-LSTM model 
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Kiyoshi Hasegawa of Chugai Pharmaceutical Co. and his colleagues have applied 
an activity landscape technique to mouse, rat and human clearance data in order 
to select lead compounds from huge, high-throughput screening datasets. A naïve 
Bayesian method with ECFP_6 fingerprints from Pipeline Pilot was used. The fre-
quencies of active and inactive states for each substructure were counted, and 
structural descriptors with biased frequency were selected. An in-house set of 
mouse clearance data was used. Mouse liver microsome clearance, CLint was 
measured (in µL/min/mg protein). The dataset was split into 25,000 assay results 
for the training set and 1000 for the test set. The threshold between stable and 
unstable was set to 30 µL/min/mg protein to maximize power of discrimination be-

tween stable and unstable. The prediction accuracy for the test set was 78% (true 76%, false 80%). 

Activity landscape representations of different types of compound sets were calculated from potency 
data and pairwise compound distances in chemical space.35 From the fingerprints, a coordinate-free 
chemical reference space was generated by calculation of pairwise compound distances 
(dissimilarities). The set of all pairwise distances defines this reference space. Then, multidimensional 
scaling was used to project these molecules from the coordinate-free reference space onto an x/y-
plane on the basis of the chemical dissimilarities. The 2D map was then color-graded by a geographic 
method. 

The prediction model was applied to compounds that had already been through high throughput 
screening, including 22 classes and 819 actives. The mouse stability of all of the primary actives was 
predicted, and chemical classes were identified in which all members of the class were predicted to be 
unstable. In this experimental validation, the result was 97% correctness for unstable compounds. 
These compounds fell into seven classes with no stable compounds. 

Kiyoshi has built a website where the structures of up to three species can be input for prediction of 
stability or instability, with a prediction score. A structure is displayed, colored to show the metabolical-
ly labile and stable atoms. A talk about this was given by J.T. Metz et al. at the SciTegic Users Group 
Meeting in 2007. The colored activity landscape can be viewed with Pipeline Pilot, using an interactive 
link from a circle in a scatter plot to see the chemical structure and its data. 

Another issue is the gap between the enzyme and cell activities. This phenomenon is often encoun-
tered in drug discovery: the cell activity of the molecule is not high even though the enzyme activity is 
high. Comparing two activity landscapes of the enzyme and cell activities, it is possible to investigate 
which molecular skeleton is a promising target for lead optimization. Since the promising chemical 
space can be easily detected, libraries to fill that space can be designed. Kiyoshi has constructed a 
prediction model for cell activity from enzyme activity, and logD models using Simulations Plus AD-
MET Predictor (https://www.simulations-plus.com/software/admetpredictor/). He showed activity land-
scape displays for two selected molecules (Figure 9). 
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Activity landscape and its application to molecular design 

https://www.simulations-plus.com/software/admetpredictor/
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Drug repositioning involves identification of new therapeutic effects of existing 
drugs and of compounds that failed to be approved in the past. It is an efficient 
strategy for drug development that has attracted much attention. A great deal of 
information on existing drugs is available (e.g., information on safety, manufactur-
ing processes, and pharmacokinetics). Drug repositioning can increase the suc-
cess rate of drug development, and reduce the cost in terms of time, risk, and ex-
penditure. A well-known example is sildenafil (Viagra), which was developed as a 
treatment for angina but was repositioned to treat erectile dysfunction and pulmo-
nary hypertension. 

Yoshihiro Yamanishi at the Kyushu Institute of Technology, and his colleagues, have developed novel 
machine learning methods that can be used to predict new associations between drugs and diseases, 
based on the molecular understanding of a variety of diseases: disease-causing genes, disordered 
pathways, environmental factors, and abnormal gene expression. Characteristic molecular features 
are often shared among different diseases. For example, the abnormal expression of phosphodiester-
ase type 5 (PDE5) is observed in both erectile dysfunction and pulmonary hypertension. Networks of 
drug-disease relationships can be produced by machine learning methods based on molecular fea-
tures of drugs and diseases. 

Yoshihiro has proposed a pathway-based drug discovery approach. A traditional approach is to 
search for drugs that regulate a single biomolecule, but, in this approach, molecular interactions be-
tween biomolecules are not taken into account. In pathway-based drug discovery36 the approach is to 
search for drugs that regulate a pathway; molecular interactions are considered by using pathway in-
formation. Integration of drug-induced gene expression data with molecular network analysis can lead 
to prediction of new therapeutic effects of drug candidates. 

Activated and inactivated pathways are identified from drug-induced gene expression signatures. The 
up- and down-regulated genes in the signatures are mapped onto many biological pathway maps, and 
the enrichment of the up- and down-regulated genes in each pathway is evaluated by pathway enrich-
ment analysis. The 163 biological pathways in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG, https://www.genome.jp/kegg/) were used. Now, z = | Gdrug ∩ Gpathway | where Gdrug denotes a  
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Figure 9. Activity landscapes for molecules selected from virtual library 

Kinase_cell_activity Kinase_enzyme_activity 

Data-driven drug discovery and medical treatment by machine learning 
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set of up- or down-regulated genes in a signature induced by a drug, and Gpathway denotes a set of 
genes in a pathway map. Assuming that z follows a hypergeometric distribution,36 the probability of 
observing an intersection of size z between Gpathway and Gdrug is computed as in Figure 10. The gene 
expression values in the signature of each drug are represented with a feature vector. 
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Yoshihiro has collaborated36 with Kenzaburo Tani, at the University of Tokyo, on pathway-based drug 
discovery for cancers. They analyzed chemically induced gene expression data of 1112 drugs on 66 
human cell lines and explored drugs that inactivate cell cycle pathways, activate p53 signaling path-
ways, and activate apoptosis pathways. They performed a large-scale prediction of potential anti-
cancer effects for all the drugs and experimentally validated the results. They successfully identified 
several potential anticancer drugs. 

Natural medicine (e.g., Kampo in Japan) is popular, but the mechanism of action of these treatments 
is unclear. In “ordinary” medicine the mode-of-action is based on the interaction of one compound with 
one target. In natural medicine, multiple compounds interact with multiple targets, and the target pro-
teins may work cooperatively. Perhaps pathway analysis on compound-induced transcriptome data 
would be helpful in such cases. 

There have been numerous publications37-43 recently on identification of the modes of action of drugs, 
and prediction of drug therapeutic indications. It is very difficult and expensive to observe gene ex-
pression profiles experimentally for all combinations of drugs and human cell lines, so large parts of 
drug-induced gene expression data are unknown or unobserved. Connectivity Map (CMap), in which 
genes, drugs, and disease states are connected by virtue of common gene-expression signatures, 
was scaled up, as part of the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) 
Consortium.44 

A novel gene expression profiling method, L1000,44 was used in the LINCS program, and it has 
opened the door to the large-scale analysis of drug-induced transcriptome data (drug profiles). How-
ever, there are far more unknown or unobserved values than known ones. This can be connected to 
disease profiles: disease-specific transcriptome data on highly and lowly expressed gene profiles. Alz-
heimer’s disease, asthma, atopic dermatitis, breast cancer, cystic fibrosis, inflammatory bowel dis-
ease, dengue, adrenoleukodystrophy, and many more diseases have been studied. For example, 
Wang et al. have reported a crowdsourcing project to annotate and reanalyze a large number of gene 
expression profiles from Gene Expression Omnibus (GEO).45 A cleaned database of extracted signa-
tures was used to visualize and analyze these signatures on the CRowd Extracted Expression of Dif-
ferential Signatures (CREEDS). 

Previous methods for missing value imputation or data completion46-52 are applicable to matrix-
structured data. Yoshihiro and co-workers have proposed a method applicable to tensor-structured 
data: Tensor-Train Weighted OPTimization (TT-WOPT).53 They applied TT-WOPT to drug-induced 
transcriptome data: 16 cell lines, 261 drugs, and 978 genes represented by a 261 × 978 × 16 tensor. 
As a baseline method, they also tested the CP-WOPT algorithm,54 which is a previously established 
tensor decomposition method applicable to data completion tasks. In the cross-validation experiments 
for performance evaluation, they randomly added artificial missing values to the original data before 
imputation. The relative standard error (RSE) between the original tensor and the one with imputed 
values was measured. In the case of artificial missing rates of 10% for the cell lines in total, RSE for  

Figure 10. Pathway enrichment analysis  
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Shigehiko Kanaya of the Nara Institute of Science and Technology and his col-
leagues have constructed a species-metabolite database for plants, the KNAp-
SAcK Core Database,58 which contains (as of April 2019) 51,179 metabolite en-
tries, 22,944 species entries, and 116,315 metabolite-species pair entries. This 
sort of database is useful because it allows the systematic analysis of large num-
bers of organic compounds with known and unknown structures in metabolomics. 
Shigehiko’s team has also developed a search engine for the database, making it 
possible to search for metabolites based on an accurate mass, molecular formula, 
metabolite name, or mass spectrum in several ionization modes. Various other da-
tabases can also be accessed on the KNApSAcK website (http://kanaya.naist.jp/

KNApSAcK_Family/), and the search engine can be downloaded (Figure 11).  
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TT-WOPT was 0.0694 compared with RSE = 0.0750 for a nearest neighbor approach. In only one of 
the cell lines was the RSE for the nearest neighbor method (0.0415) better than RSE for TT-WOPT 
(0.0416). TT-WOPT also works well for 50% and 90% missing rates. 

In Yoshihiro’s work, the original drug-induced transcriptome data are subjected to tensor decomposi-
tion to get a new version, including imputed data. From the latter a drug indication prediction can be 
made. For comparison, three existing transcriptome-based drug repositioning methods were com-
pared, with and without tensor decomposition: inverse signature,38 XSum,41 and multitask learning.55 A 
benchmark dataset of 353 associations (261 drugs and 46 diseases) was used. The area under the 
receiver operating characteristic curve (AUC) was measured. Tensor decomposition contributed to 
more accurate prediction of drug indications in most cases. AUCs were more than twice as large for 
the multitask learning method for all 16 cell lines. Moreover, tensor decomposition is more effective in 
cell lines with high missing rates. 

Yoshihiro gave two examples of predicted indications which have been confirmed with independent 
resources. Amodiaquine is an antimalarial drug. A predicted indication was pituitary adenomas, and 
this was confirmed by the literature.56 Niclosamide was originally an anthelminthic. A predicted indica-
tion of adult T-cell leukemia was confirmed by the literature.57 

Yoshihiro concluded that machine learning methods can predict new therapeutic effects of drug candi-
date compounds. Pathway analysis is useful for mode-of-action identification and drug discovery, and 
tensor decomposition for omics data contributes to enhancing the performance of drug indication pre-
diction. Such methods will speed up the delivery of necessary drugs to patients. 

Integrated cheminformatics and bioinformatics data science 

Figure 11. KNApSAcK screen shot 

http://kanaya.naist.jp/KNApSAcK_Family/
http://kanaya.naist.jp/KNApSAcK_Family/
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Shigehiko believes that data science can be created by integrating disciplines including theoretical un-
derstanding in various research fields, informatics (for data systemization, model construction, and 
prediction), and statistics (for validation). Specifically, chemistry and chemical physics could be over-
lapped with chemical information (molecular structures), and chemometrics validation. An example is 
the overlap of deuterium isotope effects in solvolysis reactions,59-61 AIPHOS,2 and computer-aided 
structure elucidation (CHEMICS1 and soft sensors4,62). Kimito Funatsu sits at the center of the overlap 
of such systems. 

The role of data science is in moving from vertical relationships to horizontal relationships (Figure 12), 
standardizing mining techniques. The KNApSAcK family (Figure 11) is an example, allowing the un-
derstanding of biology based on natural products databases.  
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There are about 20,000 alkaloids in the KNApSAcK database, but few of their biosynthesis pathways 
are fully identified. Shigehiko and his co-workers have constructed a model to predict the precursors 
of alkaloids based on multi-graph convolutional neural networks (MGCNN).63 It is sometimes difficult 
for current fingerprint representations to emphasize specific features for target problems efficiently. It 
is advantageous to allow the model to select the appropriate features according to data-driven deci-
sions. By encoding a molecule as an abstract graph, applying “convolution” on the graph, and training 
the weight of the neural network framework, the neural network can optimize feature selection for the 
training problem. By incorporating the effects from adjacent atoms recursively, graph convolutional 
neural networks can extract the features of latent atoms that represent chemical features of a mole-
cule efficiently. The researchers trained the network to distinguish the precursors of 566 alkaloids, 
which are almost all of the alkaloids with known biosynthesis pathways, and showed that the model 
could predict starting substances with an average accuracy of 97.5%. The prediction of pathways con-
tributes to understanding of alkaloid synthesis mechanisms and the application of graph based neural 
network models to similar problems in bioinformatics would therefore be beneficial. 

Figure 12. Data science 

Development of data-driven chemistry in chemistry and chemical engineering 

Cheminformatics has been applied to various areas of chemistry: molecular design, 
materials design, organic synthesis design, structure elucidation and process con-
trol. Kimito Funatsu presented an overview of these applications during his re-
search life. In pursuit of a desired function, a novel compound, material, or device is 
required. The first step in producing one is to decide what to make. Designing the 
molecule or material may involve modeling, inverse analysis, or data analysis. The 
next step is deciding how to make the product, and this may involve synthesis de-
sign or product prediction. A production process is then needed to make a commer-
cial product. Reaction, separation, and refinement are carried out in the chemical 
plant, and, in order to produce the product with the desired property, quality control 

of the process is important. The fourth step is analysis, which may require structure determination.  
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Finally, after the products are provided to the public, methods for recycling and reuse are also re-
quired. These five units are important subjects in cheminformatics. Knowledge to support them is cre-
ated from many kinds of data and information. 

This knowledge has to be organized, by data modeling, and used for prediction and design. Structure-
property (or activity) relationship models can be constructed, and candidate molecules or materials 
can be generated that satisfy the desired property, by “inverse analysis” (see Figure 13). The genera-
tion of candidate structures controlled by the model is the driving force for de novo design (in drug dis-
covery), design of highly functional polymers (including monomer design), and catalyst design. Devel-
oping a structure generator is challenging; even for a molecular formula as simple as C6H6, there are 
217 possible isomers. 
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In the first stage of development of new drugs, various lead compounds with high activity are required. 
To design such compounds, Kimito and co-workers have focused on chemical space defined by struc-
tural descriptors. New compounds close to areas where highly active compounds exist will show the 
same degree of activity. Visualization of chemical space is useful for understanding activity distribution 
in chemical space and determination of the target area for structure search by activity distribution. 
Structures in chemical space are described by many descriptors, giving rise to high dimensional 
chemical space. This is projected onto a 2D plane by generative topographic mapping. The activity is 
displayed as a heat map on this 2D plane. Thus target areas for structure search can be assigned. 

Kimito’s team has developed a new de novo design system64 to search a target area. First, highly ac-
tive compounds are manually selected as initial seeds. Then, the seeds are entered into the system, 
and structures slightly different from the seeds are generated and pooled. Next, seeds are selected 
from the new structure pool based on the distance from target coordinates on the map. Activity distri-
bution and druglikeness can be visualized on the same map, and the target area selected by consider-
ing overlap. The initial de novo design system for exploring chemical space (DAECS) was modified65 
to enable the user to select a target area to consider properties other than activity, and improve the 
diversity of the generated structures by visualizing the druglikeness distribution and the activity distri-
bution, generating structures by substructure-based structural changes, including addition, deletion, 
and substitution of substructures, as well as the slight structural changes used in DAECS. Through 
case studies using ligand data for the human adrenergic alpha2A receptor and the human histamine 
H1 receptor, it has been shown that the modified DAECS can generate high diversity druglike struc-
tures, and the usefulness of the modification of the DAECS has been verified. 

Figure 13. Novel molecule and material design 
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In the recent study,65 where the target protein was the histamine H1 receptor, the training data were 
522 structures and pKi values selected from ChEMBL, and the descriptors were 142 fingerprints from 
PubChem. The training data for construction of the discriminant model were 1000 structures from BIO-
VIA Comprehensive Medicinal Chemistry (http://accelrys.co.jp/products/databases) and 1000 non-
drug structures from the BIOVIA Available Chemicals Directory (http://accelrys.co.jp/products/
databases). The modeling method was support vector machine. Kimito showed visualization with 
structure generation (Figure 14) and some generated structures (Figure 15). 
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Kimito next discussed polymer alloys, a class of polymer blends where addition of a second polymer is 
tailored to provide controlled morphology and thus specific performance characteristics. Polymer al-
loys can be produced by mixing, melting, and crystalizing a mixture of multiple polymers, then by 
molding, melting, and crystalizing the mixture. Data items include the properties of each component 
polymer, and the mixing conditions, molding conditions, and alloy properties. There can be 100-200 
data items. 

Kimito has also worked on the design of more efficient polymeric optical films (Figure 16) that manage 
the polarization of light. He explained the mechanism of polarizing transmittance and reflection, and its 
relationship to polymer orientation in machine direction (MD), and polymer orientation in transverse 
direction (TD). 

Figure 14. Structure generation in high activity and druglike areas 

Figure 15. Structure generation. 

http://accelrys.co.jp/products/databases
http://accelrys.co.jp/products/databases
http://accelrys.co.jp/products/databases
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Figure 16. Brightness-improved film 

Elsa Alvaro, chair of the ACS Division of Chemical Information, formally presented the Herman 
Skolnik Award to Kimito Funatsu at the end of the symposium. 

His objective was to construct a quantitative model of the properties of light improved film and to de-
sign a more efficient film. He aimed to optimize process conditions such as extrusion and to achieve 
brightness (in cd/m2) ≥5400, MD transmittance ≥82%, and TD transmittance ≤20%. Object variables 
were brightness, MD transmittance, and TD transmittance. Explanatory variables were composition 
(percentages of polyethylene naphthalate, polyethylene terephthalate, and polystyrene), percentages 
of three compatibilizing agents, and process conditions (stretching temperature, extrusion machine ID 
(1 or 2), stretching magnification, and thickness). The number of samples was 26. The results of par-
tial least square analysis were excellent: brightness R2 = 0.916, Q2 = 0.682, MD transmittance R2 = 
0.977, Q2 = 0.920, TD transmittance R2 = 0.930, Q2 = 0.746. 

Kimito’s final topic was process control. In operating chemical plants, operators have to monitor the 
operating condition of the plants and control process variables. So, process variables such as temper-
ature, pressure, liquid level, and concentration of products need to be measured online, but none of 
them is easy to measure online because of technical difficulties, large measurement delays, high in-
vestment cost, and so on. In order to cope with this problem, soft sensors are widely used in chemical 
plants. Soft sensors are inferential models constructed between easy-to-measure variables, such as 
temperature and pressure, and variables that are difficult to measure online, such as concentration or 
property. By inputting temperature and pressure variables to soft sensor models, the soft sensor can 
estimate property and concentration variables online with high accuracy. Thus, the process operator 
can obtain, and use the predicted values for process control in real time. 

Kimito returned to his initial theme of the steps in cheminformatics, the first step being what to make 
and the second being design. In the design step, a structure-property relationship model is construct-
ed for inverse analysis, to generate candidate structures or materials. It is important to incorporate 
process parameters into the modeling step. How to make the material is considered at the same time. 
This is an important concept in materials design, because the property of materials is strongly affected 
by process conditions, even for the same starting materials. Eventually, a production process is need-
ed to make a commercial product. Here process control, namely quality control of the product, is par-
ticularly important. In this step, the quality of the product is monitored by a soft sensor online, and the 
quality is controlled by operating process parameters. Simultaneous consideration of quality control 
can realize integrated treatment of materials design, examination of process conditions, and quality 
control. Kimito emphasizes this concept as process informatics. 
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