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Introduction 

Veerabahu (Veer) Shanmugasundaram of Pfizer, who chaired the symposium, gave a brief 

introduction highlighting Jürgen’s achievements. (A lengthier tribute has appeared at 

http://bulletin.acscinf.org/node/655.) Jürgen obtained his diploma (M.S.) and Ph.D. degrees (under 

Wolfram Saenger) in biochemistry from the Free University of Berlin. He then did postdoctoral 

studies with Arnie Hagler at Biosym in San Diego, focusing on DFT calculations of enzyme-inhibitor 

complexes. At Bristol-Myers Squibb he worked on protein modeling and structure-based design 

projects and developed his interests in bioinformatics and cheminformatics research. During his 

tenure at New Chemical Entities, he firmly established himself as a thought leader in 

cheminformatics. After 16 years in the United States, he returned to Germany where he is currently 

Professor and Chair of Life Sciences Informatics at the University of Bonn. Jürgen is a leader in the 

development and application of cheminformatics and computational solutions to research problems 

in medicinal chemistry, chemical biology and life sciences. He has done pioneering work in 

compound-centric data visualization and analysis in chemistry and is widely recognized for his 

seminal and prolific research work in several areas that are of interest to industry. His research 

interests include large-scale graphical SAR analysis, navigating high-dimensional space, multi-target 

modeling, machine learning and virtual screening. 

The award symposium was divided into four sections. The first three speakers were “people Jürgen 

has looked up to”: Tony Hopfinger, Gerry Maggiora and Peter Willett, all of them former Herman 

Skolnik Award winners. (Arnie Hagler was also to have been in this group but he was unable to 

attend.) The next speakers were Jürgen’s colleagues and peers: Alexandre Varnek, Kimito Funatsu, 

Gisbert Schneider, Pat Walters and Veerabahu Shanmugasundaram. They were followed by some of 

Jürgen’s present and past students: Ye Hu, Eugen Lounkine, and Anne Mai Wassermann. Finally 

Jürgen himself gave the award address. 
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Front row, L to R: Alexandre Varnek, Peter Willett, Jürgen Bajorath, Kimito Funatsu, Ye Hu, Anne Mai 
Wassermann, Veerabahu Shanmugasundaram, Jane Tseng 
Back row, L to R: Gisbert Schneider, Eugen Lounkine, Gerry Maggiora, Pat Walters 

Receptor-independent ligand activity models and receptor-dependent activity models 

Jane Tseng presented the first talk on behalf of Tony Hopfinger of the University of New Mexico, 

who was unable to attend. In developing predictive methods to construct ligand-receptor binding 

models, most often to estimate IC50 values in the format of QSAR models, contributions from the 

receptor have been neglected. In the beginning, when protein-ligand structures were not available, 

the original goal of 4D-QSAR analysis1 was to develop a methodology to complement Comparative 

Molecular Field Analysis (CoMFA).2 In CoMFA, descriptors are calculated as grid point interactions 

between a probe atom and the target molecules and only one conformation of each compound is 

considered, not a conformational ensemble profile, as in the 4D-QSAR method. A new use of 4D-

QSAR is to permit the parsing of information content arising from receptor-independent (RI) ligand 

activity models, as opposed to receptor-dependent (RD) models. To what extent is an RI ligand 

activity model (i.e., classic QSAR) of value in drug design applications? 

4D-QSAR includes the conformational flexibility and the freedom of alignment by ensemble 

averaging in the conventional 3D descriptors found in traditional 3D-QSAR methods. Thus, the 

“fourth dimension” of the method is ensemble sampling of the spatial features of the members of a 

training set. In this approach, the descriptors are the occupancy frequencies of the different atom 

types in the cubic grid cells during the molecular dynamics simulation time, according to each trial 

alignment, corresponding to an ensemble averaging of conformational behavior.3,4 The grid cell 

occupancy descriptors (GCODs) are generated for a number of different atom types (e.g., nonpolar, 

hydrogen bond acceptor, aromatic), called interaction pharmacophore elements (IPEs). The variable 

selection is made using a genetic function algorithm (GFA).5 Multiple good QSAR models can be 

generated in the GFA step and the best model has to be established. 

The 4D-QSAR methodology can be used in a receptor-dependent (RD) mode when the geometry of 

the receptor is available. In the RD-QSAR analysis, models are derived from the 3D structure of the 



multiple ligand-receptor complex conformations. This approach provides an explicit simulation of 

the induced-fit process, using the structure of the ligand-receptor complex, where both ligand and 

receptor are allowed to be completely flexible by the use of molecular dynamics simulation. RD-

QSAR is used to gather binding interaction energies, as descriptors, from the interaction between 

the analogue molecules and the receptor.6 The RD-4D-QSAR approach7 employs a novel receptor-

pruning technique to permit effective processing of ligands with the lining of the binding site 

wrapped about them. Data reduction, QSAR model construction, and identification of possible 

pharmacophore sites are achieved by a three-step statistical analysis consisting of genetic algorithm 

optimization followed by backward elimination, multidimensional regression and ending with 

another genetic algorithm optimization.8 

The paradigm of 4D-QSAR analysis does appear to afford identical and comparative model 

development capabilities for both RI and RD studies. Both numeric and actual spatial 

pharmacophore subtractions of RI- and RD-QSAR models developed from training sets in which 

receptor information is available can be performed and a general assessment of lost design 

information in an RI study can be made. 

Jane presented results for six ligand-receptor systems for which both an RI- and an RD-4D-QSAR 

analysis model had been constructed. She presented tentative conclusions from comparisons of the 

RI- and RD-4D-QSAR models and their pharmacophore sites (GCODs). The RD models are about the 

same “quality” (in terms of r2 values) as the RI models, but usually have fewer GCOD terms. The RD 

models usually contain one or more ligand-receptor based GCODs, but receptor-only based GCODs 

are not common in the RD models. Eye-ball selected clusters of “common” GCODs account for about 

50% to 80% of the variance explained by the RI and the RD models. 

Tony speculates that for ligand-receptor pharmacophore-based QSAR models, 20% to 40% of the 

targeted information in an RD-QSAR model is different from that of its corresponding RI-QSAR 

model. There are no discernible differences in atom-types or GCOD occupancy values, but RD GCODS 

are found near receptor walls whereas RI GCODs are found in “open” receptor space which is often 

most occupied by ligand atoms. This type of comparison of RI- and RD-QSAR models is only possible 

for datasets where explicit ligand-to-receptor binding occurs, and the identical pharmacophore 

generating methodology must be used on both the RI dataset and the corresponding RD dataset. 

The major finding of a 20 to 40% difference in a RI-4D-QSAR model and its corresponding RD-4D-

QSAR model may be at odds with Dick Cramer’s recent success9 in correctly predicting 12 ligands 

from an RI ligand-receptor model. 

Non-specificity of drug-target interactions 

Gerry Maggiora of the Translational Genomics Research Institute, Tucson, gave this talk. System 

complexity, non-specificity, and biological reductionism are issues confronting drug discovery. 

Complex systems, such as biosystems, weather systems, and traffic systems, have numerous 

interacting component parts and unpredictable behavior. They are non-computable and have 

emergent properties. Emergent properties arise out of more fundamental entities and yet are 

irreducible with respect to them.  

Biological systems are structurally and functionally complex. The central dogma of molecular 

biology, DNA makes RNA makes protein, is an overly simplistic concept.10 An organism’s phenotype 

is influenced by genomic and epigenetic phenomena, the latter being linked to a variety of biological 



sensors that are able to sense their environments and influence the functions the system can carry 

out. The discovery of microRNA revealed that part of “junk DNA” is actually transcribed by the 

machinery in cells into bits of RNA that are fundamental controllers of life.  

Biological systems have a hierarchical structure: population, organism, organs, tissues, cells, 

organelles, molecules. The reductionist approach seeks to decompose biological systems into their 

constituent parts in an effort to understand the biology induced by these parts. Moving up the 

biological hierarchy, function is reintroduced and the size and complexity of the systems tend to 

increase.11 

The notion of specificity in biological systems has a long history. Notions of specificity and 

reductionism led to the single‐target hypothesis which is still a major model in drug discovery. 

Adverse drug reactions and repurposed drugs imply a greater lack of specificity in biosystems than is 

generally assumed. The emerging field of polypharmacology addresses the interaction of drugs with 

multiple targets. A published analysis of the drug-target network12 suggests a need to update the 

single drug-single target paradigm. Many analyses of drug-target interactions have been reported.13-

20 There are also many drug-target databases.21-27  

Data quality is an issue for these databases: the data are obtained by different methodologies and 

different experimental protocols in different laboratories, and drug-target interactions are 

predicted. The data are inconsistent within and among databases. The data may not be complete, 

that is, it may not relate all selected compounds to all selected targets,15 and drug-target space (all 

compounds against all targets) may not be completely covered. So, how promiscuous are drugs and 

how much biology is affected by the introduction of a single drug? 

In the drug discovery landscape, the organismal level can be related to the molecular level by highly 

complex empirical models through to simpler mechanistic models; a mechanistic model relating a 

molecule to an organism is less physiologically relevant than an empirical model. Empirical models 

relate to phenotypic screening, mechanistic models to target-oriented screening. 

Target-oriented drug discovery requires well validated targets. Sufficient details of the full 

mechanism of action are generally lacking, but, on the plus side, target-oriented screening is 

generally amenable to a high-throughput format. Screening hits are typically more limited than 

those obtained in phenotypic screens; it is unlikely that “inactive” regions of chemical space will be 

considered further; SAR typically neglects interactions with other targets; and follow-on phenotypic 

screens are required to assess biological efficacy. 

Gerry gave as an example the use of imatinib in chronic myeloid leukemia. The target is Bcr-Abl 

kinase, a constitutively active product of the BCR/ABL fusion gene. Imatinib binds to the ATP binding 

region of Bcr-Abl kinase. The STITCH 4.0 database, however, shows that imatinib interacts with at 

least 10 different proteins, accounting perhaps for 24 or more adverse drug reactions observed for 

imatinib. Gerry also showed a network of imatinib interactions with the 52 proteins that interact in 

any fashion with imatinib. The Drug2Gene database records 41 proteins associated with imatinib 

binding. BCR/ABL behavior is complex28,29 and drug resistance, both de novo and secondary, is 

observed. It is a scientific aphorism that in an experiment it is difficult to find what you are not 

looking for. 



Lessons can be learned from metabolic engineering: numerous metabolic engineering studies show 

that metabolic networks cannot be regulated by perturbing a single network component. 

Manipulating single genes or gene products does not affect phenotype; or the genes’ influence on 

phenotype does not arise in a simple, obvious fashion. Introduction of any xenobiotic into a 

biosystem affects multiple, and in many cases diverse targets, so there is a significant degree of 

“mechanistic uncertainty” in target-oriented drug discovery.  

Phenotypic screening30 has thus re-emerged. Phenotypic methods, which rely much less on 

mechanistic details, can provide a more robust platform. They employ a phenomenological 

(empirical) approach that is function‐based rather than mechanism-based. They are hypothesis-

driven, and similar to statistically based systems models. Phenotype-based approaches are closer to 

“intrinsic biology” with increased likelihood of finding viable leads. They typically generate a greater 

number of diverse hits than target-based screens. Functional responses are ideally, but not always, 

related to disease states. Phenotype-based approaches are particularly useful in cases where the 

biology is not clearly understood. Phenotypic screens are inherently multi-target screens but are 

target- and mechanism-agnostic. Promiscuity may be a virtue in phenotypic screens. The use of high-

throughput formats is limited, but improvements are on the way. Determining the mechanism of 

action may be an issue, and incorrect target determination can cause significant problems. Gerry 

made two final observations: if your only tool is a hammer, all problems begin to look like nails; and 

the bigger the hammer, the easier it is to pound the nails. 

Molecular similarity approaches in cheminformatics 

Peter Willett of the University of Sheffield outlined the early history of molecular similarity, and 

presented a bibliometric analysis. As Rouvray31 noted “Similarity is ubiquitous in scope, 

interdisciplinary in nature, and seemingly boundless in its ramification”. Mendeleev’s 1869 discovery 

of the Periodic Table is often cited as the first example of similarity concepts in chemistry, but there 

are many other historical examples.32 Computational measures of similarity are of great importance 

for cheminformatics, as a result of the “similar property principle”, which states that structurally 

similar molecules have similar properties. There are many exceptions to the principle but it is still a 

useful rule-of-thumb. It is generally ascribed to a book by Johnson and Maggiora,33 but Johnson and 

Maggiora had earlier ascribed it to a 1980 work by Wilkins and Randic.34 The principle was in fact 

widely understood, even if not expressed in explicit form, much earlier than that, all the way back to 

1868.35 Analogous similarity relationships in geography36 and social networks37 have been 

referenced in recent publications in cheminformatics, the latter in studies of chemical space 

networks by Jürgen Bajorath. The cluster hypothesis underlying document clustering38 spurred 

Peter’s own studies of chemical clustering, given the analogies between cheminformatics and 

information retrieval. 

The similarity principle provides not only a rationale for using similarity techniques in 

cheminformatics but also a way of validating them, for example in comparison of measures for 

similarity searching where benchmark datasets of actives and inactives are used to evaluate the 

relative effectiveness of different measures on the extent to which nearest neighbors of known 

actives are also active. There are analogous validation approaches in clustering and diversity 

applications, for example, all the molecules in a given cluster should have broadly similar properties. 



The earliest example of clustering chemical databases was work39 at ICI Pharmaceuticals Division in 

which fragment-based similarities were used to cluster around a known active if there were at least 

some number of nearest neighbors above a similarity threshold. Common structural features in such 

clusters were identified. Adamson and Bush40,41 were the first to use 2D substructure searching 

features in a comparison of the effectiveness of similarity measures for single-linkage clustering. 

Fingerprint-based measures are still the most common 40 years later. 

At Sheffield University extensive comparative studies of a wide range of similarity measures and 

clustering methods were carried out by Willett and Winterman,42-44 using the Adamson-Bush 

evaluation procedures. Fragment occurrences were found to be slightly better than incidences. The 

Tanimoto coefficient was found to be the most effective coefficient of those tested, and it is still the 

standard for similarity applications in cheminformatics. Ward’s hierarchic agglomerative method45 

has since proved to be the preferred clustering method, but the non-hierarchic, nearest-neighbor 

method of Jarvis and Patrick46 was for years a cost-effective alternative, given the algorithmic 

complexity of Ward’s method. 

The use of the similar property principle for ligand-based virtual screening was initially studied in the 

mid-1980s at Lederle Laboratories,47 the Upjohn Company, and Pfizer in the United Kingdom 

together with Sheffield University.44,48 The use of substructure-searching fragments and simple 

association coefficients is effective and efficient in operation, and is a simple enhancement of 

existing database software; there was therefore a rapid take-up, and 30 years later this is still a 

standard approach to virtual screening. Many other 2D and 3D approaches are now available, but 

they are still less widely used. Perhaps the main enhancement since the initial work is the use of 

data fusion methods, as first studied at Merck,49-51 and at Sheffield.52-55 

Developments in combinatorial chemistry and high-throughput screening in the early 1990s spurred 

interest in the selection of diverse sets of compounds, 56,57 but work on compound selection had 

been undertaken several years previously at Upjohn, and at Pfizer in the United Kingdom together 

with Sheffield University, based directly on the similarity measures that had been developed 

previously for clustering and similarity searching. Methods included cluster-based selection,43 and 

dissimilarity-based selection to optimize a diversity index.48,58 The latter, using the Kennard-Stone 

algorithm, is now widely implemented as MaxMin.59 

Peter concluded his talk with a bibliometric analysis of the literature of molecular similarity, as 

reflected in the Web of Science database. He found 86,663 citations to 2,980 articles on molecular 

similarity, with an h-index of 114 and a mean of 29.1 citations per article. The distribution of author 

contributions is highly skewed: Jürgen Bajorath is the most prolific author, with 95 of the 2,980 

articles (Peter himself is close behind with 88), but there are 6,579 singleton contributions. As 

regards organizations, Sheffield has published largest number of articles (111), but there are 1,014 

singletons amongst the 1,767 distinct organizations. Ten organizations, including five private-sector 

ones (AstraZeneca, GlaxoSmithKline, Merck, Novartis, and Pfizer) have 50 or more articles. Thirty of 

the 2,980 articles have 250 or more citations; the top five are by Allen et al.,60, with 1400 citations, 

Klebe et al.,61 Willett et al.,62 Tropsha et al.,63 and Bemis and Murcko.64  

The citations appeared in 3,977 distinct publications, with the most frequent being J. Chem. Inf. 

Model. (2724), J. Med. Chem. (2075), Bioorg. Med. Chem. (1019), Bioorg. Med. Chem. Lett. (986), J. 

Comput.-Aided Mol. Design (734), Eur. J. Med. Chem. (695), Mol. Inf. (645), J. Mol. Graphics Modell. 



(461), PLoS One (429), and J. Am. Chem. Soc. (372). The citing journals come from 202 distinct Web 

of Science subject categories: the methodological tools developed by the molecular similarity 

community are thus clearly of very broad applicability. Jürgen Bajorath has 11,037 citations to his 

452 articles (120 of them in J. Chem. Inf. Model.) with an h-index of 48 and a mean of 24.4 citations 

per article. Of these, 16 have 100 citations or more, the top five65-69 illustrating Jürgen’s 

contributions to multiple fields of chemistry and the life sciences. 

Generative topographic mapping 

Alexandre (Sasha) Varnek, of the University of Strasbourg, France, described this tool for chemical 

space analysis. There are many ways of visualizing chemical space. In descriptor-based chemical 

space, where a D-dimensional vector represents each molecule, two popular approaches are used: 

similarity network graphs, and dimensionality reduction techniques which transfer the objects from 

the D-dimensional chemical space into a latent space of 2 or 3 dimensions.  

Principal component analysis (PCA) and self-organizing Kohonen maps (SOM) are commonly used for 

exploration of large chemical spaces but both have drawbacks. PCA processes nonlinear data poorly. 

SOM is a nonlinear method and due to its topology-preserving character, it provides more 

information-rich plots than PCA, but it suffers from its purely empirical nature and it lacks solid 

statistical foundations. 

Generative Topographic Mapping (GTM)70,71 is a probabilistic extension of SOM. GTM relates the 

latent space with a 2D “rubber sheet” (or manifold) injected into the high-dimensional data space. 

The visualization plot is obtained by projecting the data points onto the manifold and then letting 

the rubber sheet relax to its original form. GTM generates a data probability distribution in both 

initial and latent data spaces. GTM can thus be used not only to visualize the data, but also for 

structure-property modeling tasks.72  

Sasha showed a probability density distribution in the latent space. Projection of an object on a GTM 

is described by the probability distribution (“responsibilities”) over the lattice nodes. Using GTM, one 

can, for each molecule, evaluate the probability of finding it in a point on the grid. There are two 

possibilities: one can use the responsibilities as molecular descriptors which can be used for 

predictions, or one can prepare an “activity landscape” to make predictions. 

In the course of this project, Sasha’s team has developed several utilities named ISIDA73-75/GTM 

(where ISIDA stands for In Silico Design and Data Analysis descriptors). They allow QSAR models to 

be created by GTM, and optimized and visualized, and the activity can be mapped. Chemical space 

maps can be used as a virtual screening tool. Sasha showed a GTM activity landscape of the stability 

of Lu3+ complexes with organic molecules;76 strong and weak binders were clearly differentiated.  

An activity landscape can be used directly to predict activities of test compounds using the 

distribution of responsibilities. In particular, in each node the product of activity landscape value for 

the training set and responsibility of the given test compounds is calculated by summation over all 

nodes of the map. It has been shown76 that the performance of GTM-based regression models is 

similar to that obtained with four popular machine-learning methods (random forest, k-NN, M5P 

regression tree and PLS) and ISIDA fragment descriptors. By comparing GTM activity landscapes built 

both on predicted and experimental activities, one may visually assess the model’s performance and 

identify the areas in the chemical space corresponding to reliable predictions. 



Sasha reported some work on a GTM-based model’s applicability domain.77 The Biopharmaceutics 

Drug Disposition Classification System (BDDCS), based on solubility and degree of metabolism, is 

used by agencies such as FDA for granting biowaivers. Sasha and his co-workers have described the 

modeling in two-dimensional latent space for the four classes of the BDDCS using VolSurf 

descriptors. Three new definitions of the applicability domain (AD) of models were suggested: one 

class-independent AD which considers the GTM likelihood, and two class-dependent ADs considering 

either the predominant class in a given node of the map or informational entropy. The class entropy 

AD was found to be the most efficient for the BDDCS modeling. The predominant class AD can be 

directly visualized on GTM maps, which helps the interpretation of the model. 

Sasha’s team has also studied a database of more than 2 million compounds containing 37 subsets 

coming from catalogs of 36 chemical suppliers, and the NCI database. The researchers focused both 

on the parameters able to characterize the whole dataset, and on the analysis of individual libraries, 

to see how they covered the chemical space, to what extent they overlap, and which library has 

compounds possessing a particular activity profile. GTM incremental learning78 is a solution for such 

large datasets. 

Sasha showed a GTM of the entire database built on MOE descriptors. Each data point represented a 

molecule and the data were colored according to molecular weight. The left hand side of the map 

was populated by light molecules and the right-hand one by heavier molecules. Instead of using each 

data point, you can use a data density distribution function represented by the ensemble of 

cumulated responsibilities. The density maps can also be built for the individual libraries. You can 

color the same GTM map by different properties or activities to visualize different property 

landscapes. Superposition of different activity landscapes helps you to select areas populated by 

compounds with particular activity profiles. The data coverage can be measured by normalized 

Shannon’s entropy calculated directly from the responsibilities. Surprisingly, the small ASINEX library 

covers the entire latent space more uniformly than the large Enamine library. 

Sasha concluded with a few details of Stargate GTM (S-GTM), in which one GTM connects activity 

space and descriptor space. S-GTM can be used to predict a pharmacological profile and to discover 

structures corresponding to a given pharmacological profile. The method has been applied to a set 

of eight GPCR activities. 

Development of a knowledge-generating platform from drug discovery through to 

production 

Kimito Funatsu of the University of Tokyo described a knowledge-unifying platform driven by big 

data. While massive amounts of quantitative data have accumulated across the pipeline of drug 

discovery, all the way from a candidate’s initial discovery up to its production process, knowledge of 

and data analysis for each of the discovery and production processes has remained isolated. The big 

data in Kimito’s project consist of a large virtual library containing chemical structures of drug 

candidates, interaction data between many proteins and many drug candidates, and plant operating 

data and product quality data. The objectives are: automated generation of a huge virtual library, 

discovery of new drugs, and acquisition of synthetic routes from the library; construction of a 

mathematical model derived from many proteins versus many compounds  together with other 

biological information, and extraction of a guide for drug discovery; and knowledge extraction for 



process monitoring and control, plus development of the automated construction of a soft sensor 

model and a model maintenance system for process monitoring. 

Prof. Okuno’s group at Kyoto University is working on ligand-target information. Problems in the 

threefold, chemical-target-phenotype model of drug discovery include a shortage of experimental 

compound-protein interaction data, and compound-phenotype association data; and a lack of 

information on direct associations between target protein and phenotype. From mathematical 

models (logistic regression, PLS and SVM), predictions can help to fill the gaps. In previous work for 

predicting compound-protein interactions using information about chemical structures and protein 

sequences, the researchers used SVM, which trains up to 250,000 interactions but it is hard to learn 

larger scale data because of memory and computation time limits. They are trying to apply deep 

learning to train millions of interactions. In the prediction of protein-phenotype associations, they 

have compared the performance of PLS and SVM with that of logistic regression. They have 

demonstrated useful accuracy and high speed, but the number of proteins with positive weights is 

limited. In future work they aim for large-scale prediction of associations for all possible 

combinations between compounds and phenotypes, and they plan interaction prediction using deep 

learning, learning from a bigger dataset of interactions, and interpreting a deep belief network 

derived from big data. 

Dr. Taiji’s group at RIKEN is working on a very large scale virtual library (billions of compounds) with 

a synthetic route for all compounds, for assessment of synthetic feasibility. The massive generation 

of chemical structures using transformational rules involves rewriting of the transform-oriented 

synthesis planning (TOSP) generator79 to allow parallel-processing, and validation of the transform 

and fragment data. 

Kimito’s part of the joint project concerns a soft sensor for monitoring and controlling a chemical 

plant. In chemical plants, efficient and stable production is required, keeping the quality of chemicals 

high. Operators have to monitor the operating condition of the plants and control process variables. 

NIR spectra, temperature, and pressure are easy to measure online. Concentration and density are 

difficult to measure online80 and are predicted in this project, using a statistical model, from the NIR 

spectra, temperature, and pressure input to the sensor. Until recently, application of soft sensors 

online has not been possible because of low predictive accuracy and complex maintenance of the 

sensor. 

Problems in soft sensor analysis include data reliability and selection; outlier detection and noise 

treatment; deciding on an appropriate regression method; overfitting; nonlinearity among process 

variables; variable selection; dynamics in the modeling process; model interpretation; model 

validation; applicability domain and predictive accuracy; model degradation; model maintenance; 

and detection and diagnosis of abnormal data. The predictive ability of soft sensors depends on the 

quality of database, but the amount of data in such a database is limited, so database monitoring is 

essential for highly predictive soft sensors. Data measured in plants are not fully exploited in process 

control. Soft sensors express relationships between process variables, so an efficient control method 

using a soft sensor model is required. 

Since the predictive performance of adaptive models depends on databases, Kimito’s group has 

proposed a database monitoring index (DMI),81 to monitor the database and a database monitoring 

method using the DMI. The DMI proposed is based on similarity between two data. The more similar 



two data are, the smaller DMI is. New data are stored when the minimum DMI value exceeds a 

threshold. Through the analysis of simulation data and real industrial data, the researchers have 

confirmed that databases can be appropriately managed and the predictive accuracy of adaptive 

soft sensor models increased by using the proposed method. 

The three research groups aim to establish a platform which allows them to unify knowledge about 

different processes, and to advance research into improved and optimized systems that view 

pharmaceutical development from a comprehensive, correlated, and high-level perspective. 

Enabling drug discovery by computational molecular design 

Gisbert Schneider, of ETH, Zürich, Switzerland, gave a talk on de novo drug design and target 

prediction. The computer-based design of drug candidates is a complementary approach to high-

throughput screening; de novo design82 supports drug discovery projects by generating novel 

pharmaceutically active agents with desired properties in a cost- and time-efficient manner. An 

example is the identification of novel cannabinoid-1 receptor inverse agonists for the treatment of 

obesity.83 A recent publication84 reviews software for de novo drug design with a special emphasis on 

fragment-based techniques that generate druglike, synthetically accessible compounds. 

The software Design of Genuine Structures (DOGS)85,86 features a ligand-based strategy for 

automated in silico assembly of potentially novel bioactive compounds. The construction procedure 

explicitly considers compound synthesizability, based on a compilation of 25,144 available synthetic 

building blocks and 58 established reaction principles, with 25 regioselective variants. This enables 

the software to suggest a synthesis route for each designed compound. The quality of the designed 

compounds is assessed by a graph kernel method87,88 measuring their similarity to known bioactive 

ligands in terms of structural and pharmacophoric features. Virtual intermediates are compared with 

a template. The scoring method does not just rely on substructure similarity, and the 

pharmacophore comparison is very permissive compared with graph similarity. The origin of the idea 

was patent beating.  

Combinatorial de novo design can also be coupled with microfluidic synthesis and analytics.89-91 

Gisbert’s team has recently reported92 a multi-objective de novo design study driven by synthetic 

tractability and aimed at the prioritization of computer-generated 5-HT2B receptor ligands with 

accurately predicted target-binding affinities. Gaussian process models were built for 974 proteins 

annotated in ChEMBL, and the team designed and synthesized structurally novel, selective, 

nanomolar, and ligand-efficient 5-HT2B modulators. The results suggest that amalgamation of 

computational activity prediction and molecular design with microfluidics-assisted synthesis enables 

the swift generation of small molecules with the desired polypharmacology. In another example, 

Fasudil, a not very active, but ligand efficient Rho-kinase inhibitor was used as a template in DOGS to 

design a fragment-like candidate that was made and tested, and could be grown into Azosemide, 

approved for treatment of hypertension in Japan. 

Gisbert’s team has also developed an approach to target prediction. Several computational tools for 

predicting macromolecular targets of new chemical entities were publicly available, but none of 

these methods was explicitly designed to predict target engagement by de novo designed molecules, 

so the researchers devised self-organizing map-based prediction of drug equivalence relationships 

(SPiDER),93 that merges the concepts of self-organizing maps, consensus scoring, and statistical 

analysis to identify targets for both known drugs and computer-generated molecular scaffolds. Some 



15,000 drugs and druglike compounds are used as the basis for clustering and 11 targets per 

compound are predicted on average. The approach results in confident predictions. 

The targets of natural products are largely unknown, which hampers rational drug design and 

optimization. Gisbert’s team has developed and validated a computational method for the discovery 

of such targets. The technique does not require three-dimensional target models and may be 

applied to structurally complex natural products. The algorithm dissects the natural products into 

fragments and infers potential targets by comparing the fragments to drugs with known targets. 

Kohonen self-organizing maps and chemically advanced template search (CATS) topological 

pharmacophores94 are used.95,96 

Of the 210,213 structures in the Dictionary of Natural Products, 31% are fragment-like and 69% have 

large structures. Gisbert’s system confidently predicted targets for 36% of the fragment-like 

products and 22% of the large ones. Sparteine is a deadly class 1a Na+ channel blocker with high 

ligand efficiency. Gisbert predicted that it interacted with the kappa opioid receptor. The fragment-

like, synthetically tractable structures goitrin, isomacroin and graveolinine were input to SPiDER for 

target inference. Five out the six confidently predicted targets were correct, unreported targets, and 

the molecules were profoundly dissimilar to the most similar reference compound. Graveolinine 

shows dual target engagement (5-HT2B and COX2) and could lead to polypharmacological tool 

compounds for example, for migraine.97 In a prospective validation, it has been shown that 

fragments of the potent antitumor agent archazolid A contain relevant information regarding its 

polypharmacology. Biochemical and biophysical evaluation confirmed the predictions.96 These 

results obtained with SPiDER corroborate the practical applicability of the approach to natural 

product “de-orphaning”. DOGS and SPiDER lead from complex natural products to synthesizable new 

chemical entities. 

Integrating public data sources into the drug discovery workflow 

Pat Walters of Vertex Pharmaceuticals discussed two examples of work carried out at his company. 

The first was high-throughput screening (HTS) data analysis. Bench scientists want to be able to find 

hints of SAR, that is, to identify scaffold classes and related classes, and visualize activity 

distributions. They want to find out what is known about the activity of the compound class from 

both internal data and the literature, and about the properties and pharmacokinetics of the class. 

They want additional information, if any, from the literature about patents, properties, and 

synthesis. Pat listed the guiding principles for a system that meets these requirements. The first is to 

keep things simple: analysis tools should be intuitive, and molecules should be organized in a 

“medicinal chemistry driven” fashion. The second is to make the results visually compelling with a 

data dashboard, and one click access to details. Above all, the system must enable answers to critical 

questions. 

The workflow involves partitioning actives into scaffold classes; profiling each scaffold class 

according to activity distribution, emerging SAR, selectivity, properties and ADME, and literature 

information; and prioritizing scaffolds for further exploration in “analogue by catalog”, and 

exploratory chemistry. 

Pat ran through an example, with screenshots, of identifying three ring scaffolds, keeping the most 

frequently occurring scaffolds, and displaying them in the HTS Viewer, with or without molecule 

details. Related scaffolds are identified by scaffold similarity and arranged by similarity in the HTS 



Viewer. Activity on the HTS target is viewed by way of boxplot distributions in which there is an 

adjustable activity cutoff; boxplots provide an easy comparison of related scaffolds. To evaluate 

selectivity, activity against other targets is studied. Users can perform a general or target class 

specific analysis. Selective series are identified from plots of number of active assays against 

numbers of assays tested. Users can drill down to activity details and compare activity and selectivity 

for related scaffolds by displaying boxplots alongside the activity scatterplots. “Thermometer plots” 

show distributions of properties related to ADME. These plots can be displayed in yet another 

column alongside the scaffolds, boxplots and activities. 

Scientists want to answer many literature questions. What biological activities are known for this 

compound class? Have related compounds been in clinical trials? Is this compound class mentioned 

in patents? Is the class well characterized (by physical properties)? Has the synthesis of the class 

been reported? There are many external sources of biological activity, physical properties, synthesis, 

drug data, and patents. While these databases provide a wealth of information, the data are often 

not in a format that is easily accessible to the bench scientist. In addition, scientists may be unaware 

of these resources, or may not know how to access and integrate the data. While it is tempting 

simply to integrate large amounts of public data into in-house systems, software developers must be 

careful to inform, without overwhelming, the target audience.  

Vertex applications, with substructure search included, link to SciFinder via the SciFinder API, and 

use an internal database for Reaxys, ChEMBL, and Thomson Reuters Integrity. Pat showed 

screenshots of the HTS Viewer links to Reaxys, ChEMBL, and Integrity data. In each case links allow 

the user to jump directly to the underlying data. Vertex and CAS collaborated to provide a direct link 

to SciFinder using the SciFinder API. The Vertex system also addresses numerous other 

considerations such as identification of potential false positives and negatives; compound purity; 

“efficiency” of hits; filtering out undesirable compounds from assays; replicates and statistics; and 

hit follow-up. 

Pat’s second example of work carried out at Vertex concerned patent informatics. IPedia is a 

platform for information sharing. Vertex used to have an in-house system for capturing data from 

the patent offices and chemical structures were entered manually. The release of SureChEMBL has 

changed all that, but unfortunately SureChEMBL’s automated process extracts all structures 

including reagents, solvents and the like. 

Can SureChEMBL be used to find interesting structures? Pat’s team took 30 drug patents (based on 

work done at AstraZeneca),98 and eliminated three which were not in ChEMBL. They looked if the 

drug structure was in the SureChEMBL curated set, and tried to develop heuristics to identify the key 

compounds. The number of structures per SureChEMBL patent was a minimum of 11, and a 

maximum of 916, with a median of 161. The drug structure was found in 19 of the 27 patents. 

Structures were classified as interesting if they were 0.8 similar to the drug, by Tanimoto coefficient 

and MDL keys, and as boring if they were less than 0.8 similar. There were 1598 interesting 

structures and 4357 boring ones. Descriptors for structures were frequency of occurrence in 

SureChEMBL, location in the patent, number of heavy atoms, molecular weight, and number of 

neighbors at Tanimoto 0.8. The team built a simple recursive partitioning model using the ctree 

method in the “party” package in R 3.0.2. Simple heuristics proved to be very effective (accuracy 

0.91 and kappa 0.77). Neighbor counts identified interesting structures: interesting compounds have 



more neighbors. This example again illustrates how public data can be used to advantage in drug 

discovery projects. 

“Close-in” analogue prioritization using SAR matrices 

Veer Shanmugasundaram described work done at Pfizer in collaboration with Jürgen Bajorath. 

Jürgen has published papers on heterogeneous SAR,99 activity cliffs versus selectivity cliffs,100 SAR 

monitoring using activity landscapes,101  and molecular mechanism based network-like similarity 

graphs.102 Visualizations include network-like similarity graphs, SAR matrices, ligand-target 

differentiation maps, and bipartite matched molecular series graphs. Veer’s talk related to SAR 

matrices,103 which are designed to highlight different SAR patterns in large compound data sets. 

They provide chemically intuitive organization of analogue series, and easy identification of activity 

cliffs, providing immediate suggestions for compound design.  

The SAR matrix data structure organizes compound data sets according to structurally analogous 

matching molecular series in a format reminiscent of conventional R-group tables. An intrinsic 

feature of SAR matrices is that they contain many virtual compounds that represent unexplored 

combinations of core structures and substituents extracted from compound datasets on the basis of 

the matched molecular pair formalism. These virtual compounds are candidates for further 

exploration but are difficult, if not impossible to prioritize on the basis of visual inspection of 

multiple SAR matrices. 

Pfizer therefore worked with Jürgen to develop a compound neighborhood concept as an extension 

of the SAR matrix data structure that makes it possible to identify preferred virtual compounds for 

further analysis. On the basis of well-defined compound neighborhoods, the potency of virtual 

compounds can be predicted by considering individual contributions of core structures and 

substituents from neighbors. SAR-rich matrices are prioritized based on SAR patterns, property 

variance, and size and dimension of matrices and confidence values can be included in the matrix 

visualization. In extensive benchmark studies, virtual compounds have been prioritized in different 

datasets on the basis of multiple neighborhoods yielding accurate potency predictions.104 

A retrospective analysis was carried out using six large sets of different G-protein coupled receptor 

antagonists extracted from ChEMBL for which Ki values were available. Matrix-pattern-based, matrix 

pattern based weighted by similarity, and analysis of variance models were compared with Jürgen’s 

nearest neighbor analysis. The prediction accuracy (r2) was best for analysis of variance models 

(between 0.7 and 0.84). Depending on the algorithmic fragmentation scheme, single-cut matrices 

(i.e., one exocyclic bond in a compound is systematically deleted to yield key and value fragments), 

dual-cut (two exocyclic bonds are simultaneously deleted), and triple-cut matrices (three exocyclic 

bonds are deleted) are separately generated. Veer showed boxplots of the mean error and type of 

matrices on the ChEMBL datasets and scatterplots of the distribution of absolute error and 

neighborhood similarity. The SAR matrices can be adapted for visualization in Spotfire DXP. This 

environment offers a structure-data viewer, filters, dynamic interactive visualizations, and a direct 

connection to the Pfizer database. 

In summary, a visual examination of SAR using an adaptation of SAR Matrices in DXP provides a way 

to view, mine and interrogate single, double and triple-cut matrices dynamically, and study SAR 

trends quickly. Several methods that prioritize virtual compounds “to fill” close-in analogue space 

ranging from nearest neighbor methods, and similarity weighting to ANOVA analysis all appear to 



perform equally well. Predictions based on single-cut matrices are as valuable as those with more 

complex double- and triple-cut matrices. 

The second part of Veer’s talk concerned series progression. The problem was to see if Pfizer could 

develop some diagnostic methods to evaluate if they were adding SAR information as chemical 

series progressed, and to determine whether more “close-in” analogues should be made, or 

whether new lead series should be identified. The strategy was a chronological analysis of “SAR 

information content” using SAR matrices, and using that to distinguish productive and unproductive 

series. 

SAR matrices with a minimum of two compounds per series and a minimum of two series per matrix 

were used. SAR matrices were classified as old if a matrix in the previous year had the same cores 

and real compounds, expanded if a matrix in the previous year was a subset (had a subset of cores 

and real compounds), and new if no matrix in the previous year was a subset. Veer showed a 

number of plots of series progression, and of raw discontinuity score against average potency. He 

concluded that monitoring changes in SAR information content in multiple series could provide some 

interesting diagnostics in evaluating series progression. Matrices with increased discontinuity are 

considered to provide rich SAR information. The appearance of new matrices with increased SAR 

discontinuity or expansion of current matrices provides clear signals to evaluate series progression. 

Graphical analysis of analogue series and associated SAR information 

Ye (Pauline) Hu, one of Jürgen’s current students in Bonn, presented AnalogExplorer. Analogue 

series are compounds sharing the same molecular scaffold or maximum common substructure 

(MCS). The conventional data format for them is a standard R-group table with all substituents and 

associated potency values. This is difficult to use for large and structurally heterogeneous series, so, 

as rapidly increasing amounts of SAR data become available, graphical approaches have been 

introduced to explore structure-activity relationships (SARs) contained in compound data sets. 

Exemplary MCS-based visualization methods include SAR maps, and the combinatorial analogue 

graph (CAG). In SAR maps analogous compounds contain substituents at two different sites. In the 

matrix format each cell represents a compound with corresponding substituents, and cells are 

colored by potency values.105 In a CAG,106 nodes are pairs of compounds with variations at one, two, 

or maximally three sites, colored by SAR discontinuity scores. Edges are the relationships between 

substitution sites. 

AnalogExplorer107 uses a compound-based approach, rather than a compound pair or substituent 

based approach. At a global level it explores substitution sites and site combinations, deconvolutes a 

series into subsets of analogues having varying R-groups at the same site(s), and prioritizes 

analogues at specific site(s) that have desired activity. At a local level it represents a subset of 

analogues at given substitution site(s) on the basis of R-groups. 

For graphical analysis, an analogue series is organized into subsets on the basis of the MCS. Each 

subset comprises compounds having varying R-groups at the same substitution site or site 

combination. Mapping of an analogue to the MCS of the series determines its subset membership. 

Each analogue of a series belongs to one and only one subset. An example is given below. In the 

complete graph, each node represents a substitution site or site combination, and all compounds 

with varying R-groups at the given site(s). The root node 0 corresponds to a compound having no R-

group at any site. The node 1 represents analogues that only contain R-groups at R1, the node 12 



analogues with R-groups at R1 and R2, and so on. Only a subset of these nodes is populated with 

analogue subsets. Nodes are scaled in size according to the number of analogues of the subset they 

represent and are colored according to the mean potency values of their analogues. The border 

thickness of nodes reflects the potency range covered by analogues comprising the corresponding 

subset. 

 

Nodes are connected via edges according to subset relationships among the substitution sites, that 

is, if a substitution site defining a node is a subset of other site combinations. Therefore, edges in the 

graph reflect hierarchical relationships between nodes in adjacent layers. In an AnalogExplorer 

reduced graph, empty nodes, indicating unexplored sites or site combinations, and edges between 

them are omitted for ease of interpretation. Another graphical component, termed R-group tree, is 

designed to represent a subset of analogues with given substitution site(s). An R-group tree of node 

245, can be constructed, for example: 



 

Pauline presented graphs for four different applications. The first application was a single analogue 

series of 52 histamine H4 receptor antagonists, with 5 sites. The majority of site combinations were 

are associated with subsets of potent analogues and four site combinations were associated with 

activity cliffs. The second application was a single series of 38 analogues with two targets (tyrosine 

protein kinase ABL and tyrosine protein kinase SRC) leading to two graphs. Application three was 

multiple series for the target tyrosine protein kinase SRC. Five graphs were made for five qualifying 

series that were available in the target set: 22 analogues with four sites, 44 analogues with seven 

sites, 13 analogues with six sites, 22 analogues with six sites, and 22 analogues with four sites. The 

fourth application concerned four (out of five) structurally related series targeting tyrosine protein 

kinase SRC. A matched molecular pair calculation reduced these to a core from a combination of 

four of the scaffolds. Pauline showed complete and reduced graphs for 101 analogues with four 

sites. A Java implementation of AnalogExplorer routines is made freely available via the ZENODO 

open access platform. 

Various ways to define molecular similarity 

Eugen Lounkine of Novartis described work done with three different types of fingerprints. The 

concepts of molecular fingerprints and molecular similarity have matured and found innumerable 

applications, but nowadays Novartis does not just use chemical similarity to find compounds that 

biologically will behave the same; rather, the company directly builds on biological profiles to assess 

biosimilarity. From a medicinal chemistry point of view, one of the primary goals of HTS hit list 

assessment is the identification of chemotypes with an informative SAR. A common way to prioritize 

them is molecular clustering of the hits. Typical clustering techniques, however, rely on a general 

notion of chemical similarity or standard rules of scaffold decomposition and are thus insensitive to 

molecular features that are enriched in biologically active compounds. This hinders SAR analysis 

because compounds sharing the same pharmacophore might not end up in the same cluster and 

thus are not directly compared to each other by the medicinal chemist. Similarly, common 

chemotypes that are not related to activity may contaminate clusters, distracting from important 

chemical motifs.  



Eugen and his colleagues have projected bioactivity onto chemical fingerprints; they have combined 

molecular similarity and Bayesian models, and introduced an activity-aware clustering approach, and 

a feature mapping method for the elucidation of distinct SAR determinants in polypharmacological 

compounds. They found that activity-aware clustering grouped compounds sharing molecular cores 

that were specific for the target or pathway at hand, rather than grouping inactive scaffolds 

commonly found in compound series. Weighted clusters often spread across many conventional 

clusters and there were large clusters that both methods agreed on.108 

Eugen and his colleagues have also developed a tool that compares compounds solely on the basis 

of their bioactivity: the chemical biological descriptor called high-throughput screening fingerprint 

(HTS-FP). Data are aggregated from 234 Novartis biochemical and cell-based assays and can be used 

to identify bioactivity relationships among the in-house collection of about 1.8 million compounds. A 

similarity metric was derived combining both the numerical correlation of the activity z-scores, using 

the Pearson correlation coefficient, and the number of assays in common between the 

compounds.109 HTS-FPs have been useful in both virtual screening and scaffold hopping. They are 

valuable not only because of their predictive power but mainly because they relate compounds 

solely on the basis of bioactivity. One challenge is the sparse nature of the HTS-FP matrix: the 

number of biologically annotated compounds still covers only a minuscule fraction of chemical 

space. To overcome this problem, Novartis has introduced Bioturbo similarity searching110 that uses 

chemical similarity to map molecules without biological annotations into bioactivity space and then 

searches for biologically similar compounds in this reference system. 

In addition, capturing the rich descriptions of compound-induced phenotypes from the literature 

gives yet another molecular fingerprint: the literature fingerprint. A naïve Bayesian model looks for 

themes around hits. Similarity search around a reference compound finds other compounds 

mentioned in the same biological or clinical context. By similarity searching a collection of terms, 

tool compounds for a phenotype of interest could be found. Novartis is carrying out exploratory 

annotation of phenotypic hits by text mining of abstracts and curated sources (e.g., ChEMBL 

provides a reference for each compound activity). MeSH terms for PubMed articles are filtered for 

informative terms. By data mining within and across projects, “signatures” derived from fingerprints 

can be found. A signature is a fingerprint template endowed with meaning. The meaning is encoded 

by relating the signatures database to the phenotype database. 

Novartis has developed network algorithms to build and navigate heterogeneous similarity networks 

from the three types of fingerprint. Eugen gave an example starting with a selection of painkillers, 

connected only by literature relationships. In the first expansion of the network all the seed 

compounds have neighbors, but they come from different similarity measures: more painkillers 

(quercetin and doxorubicin) are added from the literature, diclofenac analogues from chemical 

similarity, and ibuprofen similars from HTS-FP. Next, the neighbors themselves are connected among 

each other, sometimes with more than one method. Distinct clusters emerge as interesting 

neighbors of neighbors (connectors) are added: morphine analogues, NSAIDs, and oncology pain 

management. Pairs that are connected by more than one method can be identified. These voting 

schemes are intuitive in graphs, and harder to formalize in conventional approaches. Alternatively, 

one can use degree, number of distinct edge types, etc. A flow algorithm is use to distribute scores. 

This standard graph neighborhood scoring algorithm is intuitive to carry out and visualize, and easily 

scalable. Eugen also showed networks of glitazones, antidepressants, and statins and warfarin. 



Graph representations provide a unique opportunity to combine distinct similarity domains in an 

interoperable way. 

Could “inactive” compounds be good starting points for drug discovery? 

Anne Mai Wassermann, now at Pfizer, talked about work done at Novartis while she was one of 

Jürgen’s postdoctoral students. For a long time the paradigm for screening library design has been 

diversity. Chemical diversity has been used as a surrogate for biodiversity, but biological fingerprints 

themselves could be used.111,112 What should then be done about the inactives? A compound 

inactive in a great many screens might be a good, selective lead from another screen. An analysis 

across more than 200 Novartis biochemical and cellular HTS assays showed that 112,872 compounds 

(14%) were consistently inactive in 100 assays. A permutation experiment showed that this was not 

a random chance effect. NIH Molecular Libraries campaigns also have many genuine inactives. The 

term “dark chemical matter” (DCM) has been coined for such compounds. 

An analysis of 1,273 “dark” and 1,257 active compounds proved that intrinsic compound solution 

quality is not a factor in the inactivity, but it did reveal bad news about the quality of screening 

collections. Analysis of the properties of a Novartis set of compounds showed that DCM compounds 

are more soluble and less hydrophobic than actives, and they are smaller and have fewer rings. 

When the structural differences, if any, between DCM and actives were studied by multidimensional 

scaling it turned out that dark compounds and actives are not too different; dark compounds are not 

outliers in either Novartis or PubChem collections. Active compounds with dark substructures have 

lower hit rates; the nearest neighbors of actives near DCM tend to be more selective. 

Anne Mai displayed some dark substructures; chemists thought that they looked fairly “innocent”. 

She also showed some dark natural products that looked as if they should be active. Could dark 

compounds be valuable hits and potential tool compounds? Perhaps it could be that they seem 

inactive at typical screening concentrations. Novartis carried out an analysis of 34 additional high 

throughput screens in each of which at least 60,000 dark compounds were tested; previously active 

compounds yielded many more hits in these 34 screens than dark compounds, but, while 87% of the 

dark hits were hits in only one of the 34 screens, only 57% of previously active compounds showed 

this (i.e., 43 % of the hits from this compound class hit in more than one of the 34 screens). The 

difference between active and dark compounds was even greater when natural product compounds 

were tested at 10 micromolar rather than 1 micromolar in 37 cancer cell lines. This fits with the 

Novartis hypothesis about concentration. 

Experiments were next carried out covering broad biology. Of 1,408 compounds (704 dark and 704 

active) submitted to 40 reporter gene assays, 92 actives but only 24 dark compounds were hits at 4 

micromolar concentration. When a dark compound is active it is more selective. In a gene expression 

panel, 61 genes were measured for 188 dark compounds and 164 actives, at 1 micromolar and 10 

micromolar concentrations. The results again supported the concentration hypothesis. The 

mechanism of action of a dark compound was elucidated in yeast HIP profiling; 200 dark compounds 

were tested against 6,000 heterozygous yeast strains, each with a different gene copy deleted. Some 

initial SAR studies with an antifungal panel have suggested a compound and analogues that were in 

vitro highly potent against C. neoformans, which causes fungal meningitis and encephalitis. The 

compound was clean against a human safety panel. 



These experiments demonstrate that, when tested for the right phenotype or target, DCM can elicit 

strong biological responses. Consequently, Novartis believes that DCM is not generally biologically 

inert, and concludes that that their reduced promiscuity makes compounds from DCM a valuable 

resource for selective biological probes, and starting points for drug discovery programs. 

Complexity and heterogeneity of data for chemical information science 

Finally, Jürgen gave his award address. Similar to the situation in biology a few years ago, we 

currently witness the advent of the big data era in medicinal chemistry. UniChem, for example, now 

links 91 million compounds; there are 61 million compounds in PubChem. Increasing amounts of 

bioactivity data are available. ChEMBL has 13.5 million activity annotations for 1.5 million 

compounds and 10,774 biological targets. BindingDB has 1.1 million binding records for 495,128 

compounds and 7,030 protein targets. PubChem has 60.7 million compounds, 1.15 million assays 

and 206,541 confirmatory assays. DrugBank records 7,759 drugs, 1,602 approved drugs, and 4,300 

protein targets. What an opportunity all these data offer! 

Rapidly growing compound numbers and volumes of activity data require elaborate infrastructures 

for deposition, curation, and organization, but the need for such infrastructures only partly reflects 

the challenges associated with big data phenomena. The “5Vs” are cited as criteria113 for big data: 

volume, velocity, variety, veracity, and value. Jürgen believes that the increasing complexity and 

heterogeneity of compound data are additional challenges for computational analysis and 

knowledge extraction, and are probably even greater challenges than mere data volumes. To 

illustrate his point, Jürgen tabulated some data for trimeprazine and promethazine (closely related 

anti-allergic agents) in DrugBank, ChEMBL, BindingDB, and PubChem. Data incompleteness also 

applies in this example. 

Another criterion that could be added is data confidence. Jürgen took compound datasets from 

ChEMBL 18 to illustrate varying confidence levels: 

 

Jürgen presented a ligand-centric view of promiscuity and the impact of data confidence. Evidence is 

mounting that polypharmacological drug behavior is often responsible for therapeutic efficacy, 

suggesting the consideration of new drug development strategies. Target promiscuity of compounds 



is at the origin of polypharmacology. For many bioactive compounds, multiple target annotations are 

available, indicating that compound promiscuity is a general phenomenon, but careful analysis of 

compound activity data reveals that the degree of apparent promiscuity is strongly influenced by 

data selection criteria and the type of activity measurements that are considered.19 The average 

promiscuity rate of Jürgen’s set 1 from ChEMBL was 6.7. The rate fell as confidence level 

increased;114 the promiscuity rate of set 8 was only 1.5. 

Jürgen’s team has also studied compound promiscuity over time. Using sets 2, 3 and 8 from ChEMBL 

20, they found that there has only been a minor increase in promiscuity over a great many years.115 

For the years 2004-1014, the promiscuity rate for set 2 has risen from about 1.8 to 2.5; for set 8 it 

has remained steady at about 1.5. It is interesting that approved drugs are more promiscuous. The 

promiscuity rate for a set 2 equivalent of approved drugs has risen from 5.9 in 2000 to 24.4 in 2014; 

for a set 8 it has risen from 1.9 to 3.7. The promiscuity rate of imatinib is particularly interesting: on 

the basis of low-confidence data, it has risen from 7 in 2004 to 690 in 2014! The high-confidence set 

8 figure for 2014 is 27. 

Global average promiscuity across five target families, GPCR class A, ion channels, kinases, nuclear 

receptors, and proteases is only 1.5 for sets of type 8 in ChEMBL 20. For example, one might have 

expected kinase inhibitors to be more promiscuous but they do not appear to be any more so than 

average if high confidence data levels are considered. Global average promiscuity does not vary a 

great deal around 1.5 as molecular weight and lipophilicity are varied, except in the case of 

compounds with molecular weight less than or equal to 200, where promiscuity is about 2.2.115  

Ye Hu and Jürgen have also taken a target-centric view of promiscuity, derived from compound 

activity data.116 The ability of target proteins to bind structurally diverse compounds and compounds 

with different degrees of promiscuity was systematically assessed on the basis of activity data and 

target annotations. Intuitive first- and second-order target promiscuity indices (TPIs) were 

introduced to quantify these binding characteristics and relate them to each other. TPI_1, the first-

order target promiscuity index is calculated as the number of unique scaffolds of all compounds 

active against a given target; it indicates the ability of a target to interact with structurally diverse 

compounds. TPI_2, the second-order target promiscuity index, is the average degree of promiscuity 

of all compounds active against the target; it reflects the tendency of a target to interact with 

specific and promiscuous compounds. 

The average TPI_1 value over all targets is 77 (for Ki data) and 61 (for IC50 data). This is not surprising: 

it is well known that many targets bind structurally diverse compounds. Only about 18% of all targets 

interact with compounds having no other reported activity (“pseudo-specific” compounds); here the 

TPI_2 value is 1. Most targets bind varying numbers of promiscuous compounds. 

Targets that interact with compounds that are structurally diverse (more than 120 distinct scaffolds), 

but with no other reported activities, have high TPI_1 and low TPI_2. Examples are leukotriene A4 

hydrolase and C-X-C chemokine receptor type 3. Targets that interact with compounds that are 

structurally homogeneous and preferentially promiscuous have low TPI_1 and high TPI_2. Examples 

are group IID secretory phospholipase A2 and matrix metalloproteinase 16. TPI_2 values establish 

the promiscuity profiles of target families; Jürgen showed some pie-charts of TPI_2 values for 

various target families.116 



We are entering the big data era in chemical information science: compounds and activity data 

volumes, heterogeneity, and complexity are increasing. Data heterogeneity and inconsistency across 

databases is observed. Compound data mining offers significant opportunities for pharmaceutical 

R&D, but ensuring high data confidence and integrity is important. Promiscuity is the molecular basis 

of polypharmacology. Degrees of promiscuity vary with data confidence. Compound- and target-

centric views of promiscuity can be taken. 

Conclusion 

After Jürgen’s award address, Rachelle Bienstock, chair of the ACS Division of Chemical Information, 

formally presented the Herman Skolnik Award to Jürgen Bajorath: 
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